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Abstract. NIST aims to recommend best practices to make secret-
sharing schemes like Shamir’s and the additive secret-sharing schemes
more secure. Side-channel attacks that leak one physical bit from ev-
ery secret share completely break the additive secret-sharing scheme –
leaking their least significant bit suffices. Shamir’s secret-sharing scheme
inherits these vulnerabilities if its evaluation places are carelessly chosen.
To further NIST’s efforts in this context, it is natural to investigate (a)
which evaluation places of Shamir’s secret-sharing scheme are robust and
(b) which evaluation places are vulnerable to such attacks.
A random choice of evaluation places is robust to such leakages with
high probability. However, adversarially chosen randomness defeats such
randomized constructions because techniques to distinguish secure eval-
uation places from insecure ones are unknown.
Our work introduces the following technical innovations.
1. A modulus choice for which protection against the LSB attack en-

sures protection against any physical bit attack.
2. An algorithm to efficiently identify secure and vulnerable evaluation

places against the LSB attack.
Building on these, we recommend modulus and evaluation places that
make Shamir’s secret-sharing scheme robust to physical bit leakage – the
first complete derandomization of existing randomized constructions.
Our work introduces new techniques to analyze the security of secret-
sharing schemes. It connects the security of secret-sharing schemes to
the orthogonality/independence properties of a system of square wave
functions. The quality of this connection depends on finding good si-
multaneous rational approximations – a Dirichlet-type approximation
problem efficiently solved using the LLL algorithm.

Keywords: Shamir secret-sharing, physical bit leakage, secure evaluation places,
local leakage resilience, derandomization, square wave families, Fourier analysis

1 Introduction

The National Institute of Standards and Technology (NIST) recently called
for submissions for future recommendations and guidelines to make threshold
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schemes more secure [10]. The additive and Shamir’s secret-sharing schemes are
fundamental building blocks with numerous applications in threshold cryptog-
raphy and distributed computing [4], like secure storage and computation over
secrets and building sophisticated public-key primitives. The insecurity of these
fundamental building blocks endangers any primitive built on top of them.

Probing wires and introducing random faults into them seem innocuous but
lead to devastating attacks – the more straightforward the attack, the greater a
security threat it poses. For example, Boneh et al. [9] showed the vulnerability of
computing RSA signatures to random fault injection into memory. Ishai, Sahai,
and Wagner [24] introduced the bit probing model to theoretically investigate
threats posed by an adversary that can probe a bounded number of memory
locations. The additive and Shamir’s secret-sharing schemes have been used
to design masking schemes as countermeasures to side-channel attacks in this
model [24, 42, 17]. This work studies the security of secret-sharing schemes when
an adversary can probe physical bits from memory that stores the secret shares
in their binary representation.

The standard notion of security for secret-sharing schemes considers an adver-
sary who obtains some secret shares and has no information about the remaining
secret shares. Innovative side-channel attacks have repeatedly violated this “all
or nothing” corruption assumption (starting with the works of Kocher et al. [26,
27, 12]). We consider an adversary that can probe a few physical bits from all
secret shares in the physical bit probe model. For example, the adversary can
leak every secret share’s least significant bit (LSB). A secret-sharing scheme is
robust to such probing attacks if the leakage remains statistically independent
of the secret [5, 18].

The LSB attack breaks the additive secret-sharing scheme’s security [33, 35].
For any finite field, there are two secrets that the adversary can distinguish with
a constant (2/π)n ≈ (0.63)n advantage. Shamir’s secret-sharing scheme presents
a (potentially) secure alternative to the additive secret-sharing scheme. However,
it inherits the additive secret-sharing scheme’s vulnerabilities if the evaluation
places are carelessly chosen [33, 14]. A random choice of evaluation places is
secure with high probability against physical bit probing attacks [33]. However,
such randomized constructions are vulnerable to adversarially chosen random-
ness because algorithms to distinguish secure evaluation places from insecure
ones are unknown. Surprisingly, even against the LSB leakage attack, such a
classification algorithm is unknown, let alone against general physical bit leak-
age. This is the classical challenge of searching hay in the haystack (or finding
water in the ocean) problems [46].

Model.Our work studies Shamir’s secret-sharing scheme over prime fields among
n parties with reconstruction threshold k. We study the security of such secret-
sharing schemes against an adversary who leaks one physical bit from every
secret share. The security parameter λ represents the number of bits in the
binary representation of a secret share.
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Our results.Our work identifies (a) secure evaluation places for Shamir’s secret-
sharing scheme and (b) new leakage threats. We perform concrete security anal-
ysis – not just asymptotic analysis.

Based on our technical contributions, we recommend choosing prime fields of
order p = 2λ−1, i.e., Mersenne primes. We present efficient algorithms to identify
secure evaluation places for Shamir’s secret-sharing scheme for (1) (n, k) = (2, 2),
(2) (n, k) = (3, 2), and (3) the general n = k cases. To begin, we present efficient
algorithms to identify secure evaluation places for the (n, k) = (2, 2) and (n, k) =
(3, 2) cases. The statistical distance between the leakage distributions for two
secrets is at most 1/

√
p for these secure evaluation places. Our algorithms identify

at least 1 − 1/
√
p fraction of all secure evaluation places. Furthermore, we also

present explicit evaluation places secure for any Mersenne prime p. Finally, we
lift the security of the (n, k) = (2, 2) base scheme to the security of Shamir’s
secret-sharing involving more parties, i.e., the general n = k > 2 case.

Technical innovations. An “exponential-type” sum involving an oscillatory
function over the finite field F captures the statistical distance between the
leakage for two different secrets. Accurately estimating this sum is challenging.
We establish a new connection to a family of periodic square waves to estimate
this sum. Families of square waves like the ones by Haar [19], Walsh [48], and
Rademacher [41] are central to engineering and science. In our work, we connect
the leakage resilience of secret-sharing schemes with the properties of another
family of square waves (see, for example, [47, 22, 21]) The similarity between
the square waves and their offsets, captured by an integral, serves as a proxy to
estimate this sum. Choosing an appropriate basis (by solving a Dirichlet-type
approximation problem using the LLL algorithm [31]) improves the accuracy
of this estimation strategy. In the context of security analysis of secret-sharing
schemes, these analysis techniques are new and possibly of broader interest.

Remark 1 (Shortcomings of Randomized Constructions and Necessity of Com-
plete Derandomization). We completely derandomize the randomized construc-
tion of [33] when (a) (n, k) = (2, 2), (b) (n, k) = (3, 2), and (c) n = k > 2.
[33] proved that a random set of (distinct) evaluation places is secure, with high
probability. However, parties cannot determine whether the selected evaluation
places are secure or not. Consequently, even though nearly all evaluation places
are secure, adversarially instantiated randomness could lead to choosing insecure
evaluation places unbeknownst to the parties. In mathematics and computer
science, it is relatively common to design randomized experiments where most
objects in the universe possess a “desired property.” However, it is computation-
ally infeasible to determine whether a given object has the desired property. For
example, in designing good expanders, randomness extractors, and linear codes.
In the context of the leakage resilience of Shamir’s secret-sharing scheme, our
efficient algorithms identify nearly all secure evaluation places. Additionally, we
also present explicit secure evaluation places.

Remark 2 (Constructing new Leakage-resilient Secret-sharing Schemes: Concerns).
A highly influential sequence of works has constructed new secret-sharing schemes
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resilient to leakage attacks [7, 2, 45, 3, 29, 8, 15, 16, 23, 13, 38, 11]. However,
these new constructions have worse information rates and lack desirable algebraic
properties (like linearity and multiplication-friendliness). Furthermore, replacing
all deployed instances of the additive and Shamir’s secret-sharing scheme from
applications seems insurmountable.

1.1 Basic Terminology and Definition

We introduce a few definitions to facilitate the presentation of our results.

Shamir’s secret-sharing scheme. Shamir’s secret-sharing scheme among n
parties with reconstruction threshold k over a finite field F proceeds as follows.
Fix a secret s ∈ F . Consider arbitrary distinct evaluation places α1, α2, . . . , αn ∈
F ∗. Sample a random F -polynomial P (X) such that degP < k and P (0) = s.
The secret shares are s1 = P (α1), s2 = P (α2), . . . , and sn = P (αn). This
secret-sharing scheme is denoted by ShamirSS(n, k, α⃗). The joint distribution of
the secret shares is Share(s) – other parameters will be clear from the context.

Representation. The secret shares are stored in their natural binary represen-
tation. For the prime field Fp (of order p), the elements of this field correspond
to the binary representation of the elements {0, 1, . . . , (p− 1)}. The security pa-
rameter λ is the number of bits in the binary representation. For example, in
the case of a prime field Fp, we have 2λ−1 < card(Fp) = p < 2λ.

Leakage Functions. This work considers physical bit leakage. So, LSBi : F →
{0, 1} is the function that outputs the i-th least significant bit. For example,
LSB0 (or, LSB, for brevity) outputs 0 for the elements {0, 2, . . . , (p− 1)}, where
F is a prime field of order p ⩾ 3. Similarly, LSB1 outputs 0 for the elements
{0, 1, 4, 5, 8, 9, . . . }. ⃗LSBi1,...,in := (LSBi1 ,LSBi2 , . . . ,LSBin) represents a leak-
age function, where i1, . . . , in ∈ {0, 1, . . . , λ − 1}. For k ∈ {1, 2, . . . , n}, this
leakage function will leak the ik-th LSB from the k-th secret share. The joint
distribution of the leakage is ⃗LSBi1,...,in(Share(s)).

Leakage Resilience. The insecurity of ShamirSS(n, k, α⃗) against a family of
leakage attacks F is

εF (α⃗) := max
s∈F∗,f∈F

SD

(
f(Share(0)) , f(Share(s))

)
.

This work considers two families of leakage functions: (1) PHYS: The family of
all physical bit leakage functions and (2) LSB: The LSB leakage attack.

1.2 Our Results

This section presents our results for the (1) (n, k) = (2, 2), (2) (n, k) = (3, 2),
and (3) n = k > 2 cases. Our objective is to efficiently identify secure evaluation
places (i.e., ones with low insecurity) and demonstrate efficient attacks on vul-
nerable evaluation places (i.e., ones with high insecurity). Below, for x, y, z ∈ R,
the expression x = y ± z is a succinct representation for x ∈ [y − z, y + z].
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Result 1: Security against Physical Bit Leakage when (n, k) = (2, 2).
For the n = k = 2 case, we recommend using field Fp, where p is a Mersenne
prime – a prime of the form 2λ−1. In this context, our work proves the following
results.

1. Corollary 4: Given evaluation places α⃗ = (α1, α2) as input, we efficiently

compute a closed-form estimate ε
(OUR)
PHYS (α⃗) ∈ [0, 1] satisfying

ε
(OUR)
PHYS (α⃗) = εPHYS(α⃗) ±

(
85/4
√
p

+
13/2

p

)
.

Intuitively, our estimation ε
(OUR)
PHYS (α⃗) is within an additive error of O

(
1/
√
p
)

of the actual insecurity εPHYS(α⃗). The results below analyze this accurate
estimation as a proxy for actual insecurity.

2. Corollary 5: Using our estimation, Figure 1 presents our efficient algorithm
to classify α⃗ as secure or not. If our algorithm classifies α⃗ as secure, then

εPHYS(α⃗) ⩽
1 + 85/4
√
p

+
13/2

p
,

which is exponentially small in the security parameter λ. Among all possible
distinct evaluation places, our algorithm classifies (at least)

1 − 1

4 ln 2
· (ln p)

2

√
p

(
1 + o(1)

)
fraction of them as secure. Supporting Material G enumerates all secure
evaluation places for a small Mersenne prime p = 213−1 using our algorithm.

3. Corollary 6: Using our estimation technique, we present an efficient adversary
that generates (s, f) ∈ F ∗ × F such that it distinguishes the secret 0 from
secret s by leaking f from the secret shares with an advantage

⩾ εPHYS(α⃗) − 2 · 85/4
√
p
− 13

p
.

Intuitively, for vulnerable evaluation places α⃗, we present an efficient leakage
attack that achieves a comparable distinguishing advantage. For example,
evaluation places α⃗ = (1, 2) and α⃗ = (1, 3) have insecurity (roughly) 1 and
1/3, respectively.

4. Corollary 7: We present explicit evaluation places that are secure against
physical bit leakages. If evaluation places (α1, α2) satisfy α2·α−1

1 = 2⌊λ/2⌋−1,
then

εPHYS(α⃗) ⩽
4 ·
(
2⌊λ/2⌋ + 2⌈λ/2⌉

)
− 6

p
= O

(
1
√
p

)
.

The upper bound is meaningful (i.e., less than 1) for all λ ⩾ 7 (Mersenne
prime p ⩾ 127).

Section 5 presents the corollary statements and their proofs (Section 5.3 to Sec-
tion 5.6 state and prove Corollary 4 to Corollary 7, respectively).
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Technical Result: Security against LSB Leakage when (n, k) = (2, 2).
The above-mentioned results on physical bit leakage bootstrap from similar re-
sults against the LSB leakage. The results in this section hold for any prime field
Fp, where p ⩾ 3, not just for Mersenne primes.

1. Corollary 1: Given evaluation places α⃗ = (α1, α2) as input, we efficiently

compute a closed-form estimate ε
(OUR)
LSB (α⃗) ∈ [0, 1] satisfying

ε
(OUR)
LSB (α⃗) = εLSB(α⃗) ±

(
85/4
√
p

+
13/2

p

)
.

2. Corollary 2: Using the estimation above, Figure 2 presents an efficient algo-
rithm to classify α⃗ as secure or not. If our algorithm classifies α⃗ as secure,
then

εLSB(α⃗) ⩽
1 + 85/4
√
p

+
13/2

p
,

which is exponentially small in the security parameter λ. Among all possible
distinct evaluation places, our algorithm classifies (at least)

1 − ln p

4
√
p
− 5/2
√
p

fraction of them as secure.
3. Corollary 3: Using our estimation technique, we present an efficient adversary

that generates s ∈ F ∗ such that it distinguishes the secret 0 from secret s
by leaking the LSB of each secret share with an advantage

⩾ εLSB(α⃗) − 2 · 85/4
√
p
− 13

p

Therefore, if the insecurity εLSB(α⃗) is large, then our efficient leakage attack
achieves a comparable distinguishing advantage.
For example, evaluation places α⃗ = (1, 2) and α⃗ = (1, 3) have insecurity
(roughly) 0 and ⩾ cos2(π/2p) · (1/3), respectively. Note that α⃗ = (1, 2) is
secure against LSB leakage but not against physical bit leakage. However,
α⃗ = (1, 3) is insecure against the LSB attack and, hence, against general
physical bit leakage.

Section 4 presents the corollary statement and their proofs (Section 4.1 to Sec-
tion 4.3 state and prove Corollary 1 to Corollary 3, respectively).

Result 2: Security against Physical Bit Leakage when n = k > 2. We
recommend using a prime field Fp, such that p = 2λ − 1. Corollary 8 presents
an efficient (randomized) algorithm to choose evaluation places α⃗ such that the
corresponding ShamirSS(n, n, α⃗) is secure to physical bit leakages; the insecurity
is at most 1/

√
p. One can identify when this algorithm fails to choose secure α⃗,
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and this failure probability is exponentially small in the security parameter λ.
Using repeated sampling, the failure probability can be further reduced expo-
nentially. Section 6 presents Theorem 2, which implies this corollary. Supporting
Material D proves this theorem using Fourier analysis. Section 6.1 presents the
proof of Corollary 8.

Result 3: Security against Physical Bit Leakage when (n, k) = (3, 2).
Corollary 8 presents a technique to “lift” the security of two evaluation places
to the security of n evaluation places (α1, α2, . . . , αn). It maps α⃗ to evaluation

places β⃗ = (β1, . . . , βn) such that if ShamirSS(2, 2, (β1, β2) ) has ε insecurity
against physical bit leakage attacks then the ShamirSS(n, n, α⃗) has (at most) 2ε

insecurity against physical bit leakage attacks. This mapping α⃗ 7→ β⃗ is highly
nontrivial and depends on the properties of generalized Reed Solomon codes. A
natural question arises: Are there more natural lifting techniques?

For example, consider the following natural lifting technique: If all evaluation
pairs (αi, αj) are secure then is α⃗ also secure? It is unclear whether evaluation
places (αi, αj) would retain their security in the presence of additional leakage
from other secret shares. We prove this result for (n, k) = (3, 2).

Consider distinct evaluation places (α1, α2, α3) as follows. Suppose the ShamirSS(2, 2, (αi, αj) )
secret sharing scheme has ε insecurity against physical bit leakages, for all dis-
tinct i, j ∈ {1, 2, 3}. Lemma 9 proves that the ShamirSS(3, 2, (α1, α2, α3) ) has
(at most) 3ε insecurity against physical bit leakages.

The key technical contribution of this specialized lifting theorem is the follow-
ing observation. The statistical distance between two leakage distributions has
a “three-wise correlation term.” We prove that this correlation term is indepen-
dent of the secret, even though k = 2 is less than the degree of the correlation,
which is 3.

For the converse, note that if there are insecure evaluation places (αi, αj),
then the entire ShamirSS(3, 2, α⃗) is also vulnerable.

Table 2 in Supporting Material G presents secure evaluation places (α1, α2, α3)
when α1 = 1, α2 = 95. The exhaustive list is too long to include in the paper.
Finding general evaluation places that are secure for (n, k) = (3, 2) (in the spirit
of Corollary 7) is an open problem.

1.3 Organization of the Paper

1. Section 2 presents a high-level overview of our technical approach to the
derandomization problem.

2. Section 3 presents the preliminaries.
3. Section 4 states and proves our results pertaining to LSB leakage.
4. Section 5 states and proves our results for general physical bit leakages.
5. Section 6 lifts the (n, k) = (2, 2) results to more general n = k > 2.
6. Section 7 presents our results for (n, k) = (3, 2) case.
7. Section 8 summarizes the prior relevant works.
8. Section 9 mentions open problems and technical challenges in characterizing

the security of leakage-resilient secret-sharing schemes.
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2 Technical Overview

This section outlines our technical approach for some representative results.

2.1 Result 1: Physical Bit Leakage (n, k) = (2, 2)

Suppose the evaluation places are α⃗ = (α1, α2). Our objective is to determine
whether Shamir’s secret-sharing scheme with these evaluation places is secure
against all physical bit leakage attacks.

For i, j ∈ {0, 1, . . . , λ − 1}, consider the leakage attack ⃗LSBi,j . This leak-
age attack leaks the i-th LSB of the secret share 1 and the j-th LSB of the
secret share 2. We prove that, for a Mersenne prime p = 2λ − 1, the security
of ShamirSS(2, 2, α⃗) against the ⃗LSBi,j leakage is equivalent to the security of

ShamirSS(2, 2, α⃗′) against the LSB attack, where α′
1 = 2−iα1 and α′

2 = 2−jα2

(see Lemma 7). Consequently, it suffices to test the security of the evaluation
places (2−iα1, 2

−jα2) against the LSB attacks, for all i, j ∈ {0, 1, . . . , λ− 1}.
For each i, j, the call to the “LSB security check subroutine” identifies eval-

uation places potentially vulnerable to the ⃗LSBi,j leakage attack. Using a näıve
union bound, the total number of potentially vulnerable evaluation places would
be proportional to λ2. However, using properties of Shamir’s secret-sharing
scheme, one can improve upon this näıve estimate, which is a significant overes-
timation of the actual number of vulnerable evaluation places.

We use a “normalization result” to improve this bound. Properties of the
generalized Reed Solomon codes imply that ShamirSS(n, k, γ⃗) is identical to
ShamirSS(n, k, Λ · γ⃗), for any Λ ∈ F ∗, evaluation places γ⃗, and n, k ∈ {1, 2, . . . }
(see Lemma 10 in Supporting Material B). Therefore, it suffices to test the se-
curity of the evaluation places (2kα1, α2) against the LSB attack, for all k ∈
{0, 1, . . . , λ− 1}. As a result, only a linear number of calls are made to the LSB
security testing algorithm instead of the näıve quadratic calls.

Figure 1 presents this pseudocode. The next section presents the pseudocode
to determine security against the LSB attack.

Remark 3 (An Edge Case). The algorithm determining the security of Shamir’s
secret-sharing scheme to LSB attack requires the evaluation places to be distinct.
Even though α1 and α2 are distinct, it may be the case that 2kα1 = α2, for some
k ∈ {0, 1, . . . , λ − 1}. So, the call to the “LSB security check subroutine” with
argument (2kα1, α2) would be invalid. Lemma 6 proves that this edge case is
insecure. This case captures why evaluation places (1, 2) are insecure against
physical bit leakage.

2.2 Technical Result: LSB Leakage (n, k) = (2, 2).

Suppose the evaluation places are α⃗ = (α1, α2). Our objective is to determine
whether these evaluation places are secure against the LSB attack. The presen-
tation below is for all prime fields F of order p such that p ⩾ 3 – not just for a
Mersenne prime p.
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Input. Distinct evaluation places α1, α2 ∈ F ∗, and F is the finite field of order p, a
Mersenne prime

Output. Decide whether the evaluation places (α1, α2) are secure to all physical bit
leakage attacks

Algorithm.
1. If there is k ∈ {0, 1, . . . , λ− 1} such that 2kα1 = α2: Return insecure
2. For k ∈ {0, 1, . . . , λ− 1}:

(a) Call the algorithm in Figure 2 with evaluation places (2kα1, α2)
(b) If the algorithm returns “may be insecure,” return may be insecure

3. Declare ShamirSS(2, 2, (α1, α2)) is secure against physical bit attacks.

Fig. 1. Identify secure evaluation places for Shamir’s secret-sharing scheme against all
physical bit leakage attacks.

Consider a secret s ∈ F ∗. Our objective is to estimate the statistical distance
between the joint leakage distributions when (a) the secret is 0 and (b) the secret
is s. Using a combinatorial argument, we prove that the statistical distance is
identical to the following expression (see Lemma 2) for an appropriate ∆.

1

2p
·
∣∣∣Σ(0)

α1,α2
−Σ(∆)

α1,α2

∣∣∣,
where

Σ
(∆)
k,ℓ :=

∑
T∈F

signp(kX) · signp(ℓ(X −∆))

signp(X) :=

{
+1, if X ∈ {0, 1, . . . , (p− 1)/2} mod p

−1, if X ∈ {−(p− 1)/2, . . . ,−1} mod p.

The s 7→ ∆ mapping is a linear automorphism over F .

Remark 4 (Intuition of the Expression). The elements {0, 1, . . . , (p−1)/2} ⊆ Fp

are positive elements, and the remaining elements are negative. We are consider-
ing functions that are the “signs of lines.” For example, signp(kX) is the sign of
the line Y = kX over the finite field, which is an oscillating function. Likewise,
signp(ℓ(X−∆)) is the sign of the (affine) line Y = ℓ(X−∆) over the finite field,

another oscillating function. The expression Σ
(∆)
k,ℓ – the inner product of these

two functions – measures the correlation between these two functions. Leakage
resilience to LSB attacks is equivalent to this correlation being independent of
the secret s and, in turn, the parameter ∆.

The evaluation places α⃗ are secure if (and only if) 1
2p ·

∣∣∣Σ(0)
α1,α2 −Σ

(∆)
α1,α2

∣∣∣ is
small for all ∆ ∈ F ∗. To this end, we aim to estimate 1

p ·Σ
(∆)
α1,α2 , for all ∆ ∈ F .

This expression is the sum of an oscillating function that appears challenging to
estimate accurately.
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Our technical solution’s innovation is to estimate (1) a real extension of this
function using integration and (2) establish a connection between the sum of
the oscillating function and the integration. Toward the first sub-objective, the
integral is defined as follows.

I
(δ)
k,ℓ :=

∫ 1

0

φ(kt) · φ(ℓ(t− δ)) dt

φ(x) := sign sin(2πx)

sign(x) :=


+1, if x > 0

0, if x = 0

−1, if x < 0.

The function φ(kx) is a square wave function with period 1 for all k ∈ Z. This
function is the real extension of the “sign of lines” function signp(X) above (with
a scaling factor). The connection is that signp(X) = φ(x), where x = X/p and
X ∈ F ∗. The square wave family {φ(kx)}k∈{1,2,... } have been studied in the

literature [47, 22, 21]. However, only I
(0)
k.ℓ was determined. Our work presents a

closed-form expression for I
(δ)
k,ℓ , for all δ ∈ [0, 1] (see Lemma 5).

Now, the second sub-objective is to estimate 1
p ·Σ

(∆)
k,ℓ using the integral I

(δ)
k,ℓ ,

where δ := ∆/p. The accuracy of estimating the sum of an oscillating function
using its integral depends on how many times the function oscillates. The number
of oscillations of the function signp(kX) · signp(ℓ(X − ∆)) is proportional to(
|k|p + |ℓ|p

)
/p, where the “norm- mod p” function is defined below.

|X|p :=

{
X ′, if X = X ′ mod p and X ′ ∈ {0, 1, . . . , (p− 1)/2},
−X ′, if X = X ′ mod p and X ′ ∈ {−(p− 1)/2, . . . ,−1}.

The estimation error is (|k|p + |ℓ|p)/p and will drown the value of the integral
for large |k|p + |ℓ|p.

At this point, the “normalization result” from the previous section is useful.
The security of ShamirSS(2, 2, α⃗) is identical to the security of ShamirSS(2, 2, γ⃗),

if γ⃗ = Λ · α⃗ and Λ ∈ F ∗. So, instead of estimating 1
p · Σ

(∆)
α1,α2 , we estimate

1
p ·Σ

(∆)
u,v , where vu−1 = α2α

−1
1 and |u|p, |v|p are small. Dirichlet’s approximation

theorem [43, 44] ensures that there are u and v such that |u|p, |v|p are at most√
p. However, finding this (u, v) is computationally inefficient. We efficiently

solve this problem with (a small) constant multiplicative slack using the LLL
algorithm [31].

To conclude, given (α1, α2), we use the LLL algorithm to construct appro-

priate “small norm” (u, v). Next, we use the closed-form expressions for I
(0)
u,v and

I
(δ)
u,v to estimate 1

2p

∣∣∣Σ(0)
α1,α2 −Σ

(∆)
α1,α2

∣∣∣, where δ = ∆/p. Finally, we maximize over

∆ ∈ F ∗ and determine the insecurity of the evaluation places (α1, α2) against the
LSB attack. We also present the closed-form expressions for the maximum value,
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which our decision algorithm directly uses. Figure 2 presents the pseudocode of
this algorithm.

Input. Distinct evaluation places α1, α2 ∈ F ∗

Output. Decide whether the evaluation places (α1, α2) are secure to the LSB leakage
attack

Algorithm.
1. Define the equivalence class

[α1 : α2] :=

{
(u, v) : u = Λ · α1, v = Λ · α2, Λ ∈ F ∗

}
.

Use the LLL [30] algorithm to (efficiently) find (u, v) ∈ [α1 : α2] such that

u, v ∈ {−B,−(B − 1), . . . , 0, 1, . . . , (B − 1), B} mod p,

where B :=
⌈
23/4 · √p

⌉
. For completeness, Figure 5 in Supporting Material A

presents this algorithm.
2. Remark: Henceforth, our algorithm interprets u, v ∈ {−B, . . . , 0, 1, . . . , B}

mod p as integers.
3. Compute g = gcd(u, v).
4. If u·v/g2 is even: Declare ShamirSS(2, 2, (α1, α2)) is secure to LSB leakage attacks
5. (Else) If u · v/g2 is odd and

∣∣u · v/g2∣∣ ⩾ √p: Declare ShamirSS(2, 2, (α1, α2)) is
secure to LSB leakage attacks

6. (Else) Declare that the security of ShamirSS(2, 2, (α1, α2)) against LSB attacks
may be insecure

Fig. 2. Identify secure evaluation places for Shamir’s secret-sharing scheme against the
LSB leakage attack.

The insecurity is at most (|u|p + |v|p)/p = O
(
1/
√
p
)
for secure evaluation

places, which is exponentially small in the security parameter. Our analysis
identifies the concrete constants. Our analysis is tight and, consequently, also
identifies new leakage attacks for insecure evaluation places.

Remark 5 (Minor Subtlety). Observe that signp(0) = +1 but sign(0) = 0. Using
careful accounting, we show that the impact of this disagreement is only ±1/p
in the overall insecurity estimation.

2.3 Result 2: Physical Bit Leakage n = k > 2

Our objective is to choose n distinct evaluation places α1, α2, . . . , αn ∈ F ∗ such
that the corresponding ShamirSS(n, n, α⃗) is secure against physical bit leakage
attacks. We prove a lifting theorem (Theorem 2) that proves the following result.

11



Given, evaluation places α⃗ we define new evaluation places

βi :=

αi

∏
j ̸=i

(αi − αj)

−1

.

Now consider the ShamirSS(2, 2, (βi, βj)) secret-sharing scheme for all distinct
i, j ∈ {1, 2, . . . , n}. If one of these secret-sharing schemes is secure against phys-
ical bit leakage, then the ShamirSS(n, n, α⃗) secret-sharing scheme is also se-
cure. More concretely, if the insecurity of ShamirSS(2, 2, (βi, βj)) is (at most)
ε, for some distinct i, j ∈ {1, 2, . . . , n}, then the ShamirSS(n, n, α⃗) secret-sharing
scheme is (at most) 2ε insecure.

We already have an efficient algorithm to classify evaluation places of ShamirSS(2, 2, (βi, βj))
as secure or not. We can use this algorithm to detect whether our chosen α⃗ has
such a secure (βi, βj) pair of evaluation places. The proof of this result is entirely
Fourier-analytic, and it is presented Supporting Material D.

2.4 Result 3: Physical Bit Leakage (n, k) = (3, 2)

Suppose the evaluation places are α⃗ = (α1, α2, α3). Our objective is to determine
whether these evaluation places are secure against all physical bit leakage attacks.

A necessary condition is that ShamirSS(2, 2, (αi, αj)) must be secure, for dis-
tinct i, j ∈ {1, 2, 3}. Surprisingly, we prove that this condition is essentially
sufficient. Technically, we shall prove that the “three-wise correlation” among
the three leakage bits is statistically independent of the secret.

Using the triangle inequality, we prove that the statistical distance between
the joint leakage distributions for (a) the secret 0 and (b) secret s ∈ F ∗ is
upper-bounded by the sum of four terms.

1. Three terms corresponding to

1

2p

∣∣∣Σ(0)
αi,αj

−Σ(∆i,j)
αi,αj

∣∣∣,
for distinct i, j ∈ {1, 2, 3} and appropriate ∆i,j determined by a linear au-
tomorphism s 7→ ∆i,j . These terms ensure that the leakage from any two
secret shares is statistically independent of the secret.

2. The final term corresponds to

1

2p

∣∣∣∣Σ(0,0)
α1,α2,α3

−Σ(∆,∆′)
α1,α2,α3

∣∣∣∣,
where

Σ
(∆,∆′)
k,ℓ,m :=

∑
T∈F

signp(kT ) · signp(ℓ(T −∆)) · signp(m(T −∆′))

and the mappings s 7→ ∆ and s 7→ ∆′ are two linear automorphisms. This
term captures the three-wise correlation between the leakage bits. We prove
that the contribution of this term is ± 1

p , which is exponentially small in the
security parameter.

12



What did we gain by proving that the three-wise correlation between the leak-
age bits is statistically independent of the secret? Without this independence
property, we would be forced to estimate this expression using an integral. The
error in this estimation would be proportional to (|u|p + |v|p + |w|p)/p, where
(u, v, w) ∈ [α1 : α2 : α3]. Using Dirichlet’s approximation theorem [31], one can
only ensure that |u|p, |v|p, |w|p ⩽ p2/3 simutaneously. Consequently, our esti-

mation error will be of the order p−1/3. Therefore, we would only be able to
guarantee that insecurity is ⩽ p−1/3. Note that currently, we are able to ensure
that the insecurity is ⩽ p−1/2 ≪ p−1/3.

Remark 6 (Odd-wise Correlation). In general, the (2t+1)-wise correlation terms
contribute at most ± t

p to the statistical distance, where t ∈ {0, 1, . . . }.

3 Preliminaries

For real numbers a ⩽ b and ε, the notation [a, b] ± ε represents the interval
[a−ε, b+ε]. For brevity, a±ε represents [a, a]±ε, which is the interval [a−ε, a+ε].
For ease of readability, we write x = a ± ε to indicate x ∈ a± ε.

For a set S, card(S) represents its cardinality. For S ⊆ F and x ∈ F , we
denote S ·x as the set {s · x : s ∈ S}. For S ⊆ F , the function 1S : F → {0, 1} is
the indicator function of the set S: 1S(x) = 1, if x ∈ S; otherwise, 1S(x) = 0.

For functions f, g : N→ N, we say f(λ) ∼ g(λ) if f(λ) = g(λ) · (1 + o(1)). We
write f(λ) ≲ g(λ), if f(λ) ⩽ g(λ) · (1 + o(1)).

For a leakage function f : F → {0, 1}, define the set f−1(b) := {x ∈ F : f(x) = b},
where b ∈ {0, 1}.

For a finite field F , parameter n ∈ {2, 3, . . . }, and elements α1, α2, . . . , αn ∈
F , define the following equivalence class

[α1 : α2 : · · · : αn] := {(Λ · α1, Λ · α2, . . . , Λ · αn) : Λ ∈ F ∗}

Supporting Material B shows that all elements in the same equivalence class
have identical resilience/vulnerability to attacks.

3.1 Functions over Finite Fields

Let F be a prime field of order p ⩾ 3. This section defines some F → Z functions.

|X|p :=

{
X ′, if X = X ′ mod p,X ′ ∈ {0, 1, . . . , (p− 1)/2}
−X ′ if X = X ′ mod p,X ′ ∈ {−(p− 1)/2, . . . ,−1}.

(1)

signp(X) :=

{
+1, if X ∈ {0, 1, . . . , (p− 1)/2} mod p

−1, if X ∈ {−(p− 1)/2, . . . ,−1} mod p.
(2)

We define the following quantity for k, ℓ,∆ ∈ F .

Σ
(∆)
k,ℓ :=

∑
T∈F

signp(kT ) · signp(ℓ(T −∆)). (3)

13



Similarly, we define the following quantity for k, ℓ,m,∆,∆′ ∈ F .

Σ
(∆,∆′)
k,ℓ,m :=

∑
T∈F

signp(kT ) · signp(ℓ(T −∆)) · signp(m(T −∆′)). (4)

We will require the following intermediate definitions for technical analysis:
slight variations of the definitions above.

s̃ignp(X) :=


+1, if X ∈ {1, . . . , (p− 1)/2} mod p

0, if X = 0 mod p

−1, if X ∈ {−(p− 1)/2, . . . ,−1} mod p.

(5)

Σ̃
(∆)
k,ℓ :=

∑
T∈F

s̃ignp(kT ) · s̃ignp(ℓ(T −∆)) (6)

Σ̃
(∆,∆′)
k,ℓ,m :=

∑
T∈F

s̃ignp(kT ) · s̃ignp(ℓ(T −∆)) · s̃ignp(m(T −∆′)). (7)

3.2 Functions over Real Numbers

This section defines some R→ R functions.

sign(x) :=


+1, if x > 0

0, if x = 0

−1, if x < 0.

(8)

φ(x) := sign sin(2πx) (9)

We define the following integral for k, ℓ ∈ Z and δ ∈ R.

I
(δ)
k,ℓ :=

∫ 1

0

φ(kt) · φ(ℓ(t− δ)) dt. (10)

Remark 7 (Intuition of the Square Waves). From standard Fourier analysis, it
is well known that sine waves sin(2π · x) and sin(2π · 3x) are orthonormal, i.e.,∫ 1

0
sin(2π ·x)·sin(2π ·3x) dt = 0. However, the square waves φ(x) = sign sin(2π ·x)

and φ(3x) = sign sin(2π ·3x) are not orthogonal (see Figure 3). Surprisingly, the
square wave φ(x) and the offset square wave φ(3(x − 1/12)) are orthogonal
(see Figure 4). A technical objective of our work will be to determine the inner

product I
(δ)
k,ℓ between a square wave φ(kx) and another offset square wave φ(ℓ(x−

δ)). For example, we have I
(0)
1,3 = 1/3 and I

(1/12)
1,3 = 0.

4 Security against Least Significant Bit Leakage

This section presents all results pertaining to the security of Shamir’s secret-
sharing scheme when n = k = 2. We begin with a powerful technical result that
we prove.
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Fig. 3. Square waves φ(x) = sign sin(2π · x) and φ(3x) = sign sin(2π · 3x) are not
orthogonal since

∫ 1

0
φ(t) · φ(3t) dt = 1/3. Blue lines draw the functions without the

sign(·) function.
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Fig. 4. Square waves φ(x) = sign sin(2π · x) and φ(3(x − 1/12)) = sign sin(2π · 3(x −
1/12)) are orthogonal since

∫ 1

0
φ(t) ·φ(3(t−1/12)) dt = 0. Blue lines draw the functions

without the sign(·) function.

Theorem 1 (Technical Result). Consider the ShamirSS(2, 2, (α1, α2)) secret-
sharing scheme over a prime field Fp, where p ⩾ 3. For any (u, v) ∈ [α1 : α2],

max
s∈F

SD

(
LSB(Share(0)) , LSB(Share(s))

)

=


± 4(|u|p+|v|p)−(3/2)

p , if |u|p · |v|p/g2 is even,

cos2 (π/2p) · g2

|u|p·|v|p
± 4(|u|p+|v|p)−(3/2)

p if |u|p · |v|p/g2 is odd,

where g = gcd
(
|u|p, |v|p

)
. Furthermore, for s = ±(u−1 · v − 1)−1 ∈ F ∗, if

SD
(
LSB(Share(0)) , LSB(Share(s))

)
>

4(|u|p+|v|p)−(3/2)

p , then there is an effi-
cient distinguisher to distinguish the secret 0 and s with advantage at least

cos2 (π/2p) · g2

|u|p · |v|p
−

4(|u|p + |v|p)− (3/2)

p

using the LSB leakage on the secret shares.

Section 4.4 presents the proof outline for this result and Supporting Material C.6
presents the full proof. Using this theorem, we begin by stating and proving the
corollaries mentioned in Section 1.2.
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4.1 Statement and Proof of Corollary 1

Corollary 1. Consider distinct evaluation places α⃗ = (α1, α2) and the corre-
sponding ShamirSS(2, 2, α⃗) secret-sharing scheme over the prime field Fp, where
p ⩾ 3. Let (u, v) ∈ [α1 : α2] such that |u|p, |v|p ⩽ B, where B =

⌈
81/4 · √p

⌉
. Let

g = gcd(|u|p, |v|p). Define

ε
(OUR)
LSB (α⃗) :=


0, if |u|p · |v|p/g2 is even,

cos2(π/2p) · g2

|u|p·|v|p
, if |u|p · |v|p/g2 is odd.

Then,

ε
(OUR)
LSB (α⃗) = εLSB(α⃗) ±

(
85/4
√
p

+
13/2

p

)
.

Proof. Use the LLL algorithm [31] to efficiently find (u, v) ∈ [α1 : α2] with prop-
erties mentioned in the corollary (see Supporting Material A for details). Observe
that the LHS of the expression in Theorem 1 is identical to εLSB(α⃗). From this
observation, the corollary is immediate.

4.2 Statement and Proof of Corollary 2

Corollary 2. Consider distinct evaluation places α⃗ = (α1, α2) and the corre-
sponding ShamirSS(2, 2, α⃗) secret-sharing scheme over the prime field Fp, where
p ⩾ 3. Suppose the algorithm in Figure 2 determines α⃗ to be secure. Then,

εLSB(α⃗) ⩽
1 + 85/4
√
p

+
13/2

p
.

Among all possible distinct evaluation places α1, α2 ∈ F ∗
p , the algorithm of Fig-

ure 2 determines at least

⩾ 1 −
1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2

p− 2
⩾(∗) 1 −

(
ln p

4
√
p
+

5/2
√
p

)
.

fraction of them to be secure. The (∗) inequality holds for any prime p ⩾ 11.

Proof. Proof of the first part. The algorithm in Figure 2 declares α⃗ to be
secure either in Step 4 or Step 5.

Suppose our algorithm in Figure 2 declared that Shamir’s secret-sharing
scheme is secure in Step 4. In this case, |u|p·|v|p/g2 is even, where g = gcd(|u|p, |v|p).
Using Corollary 1, we get that our estimation ε

(OUR)
LSB = 0. The relation between

our estimation and insecurity yields

εLSB(α⃗) ⩽
85/4
√
p

+
13/2

p
.
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Suppose our algorithm in Figure 2 declared that Shamir’s secret-sharing
scheme is secure in Step 5. In this case, |u|p · |v|p/g2 ⩾

√
p and it is odd. Using

Corollary 1, we get that our estimation ε
(OUR)
LSB ⩽ 1/

√
p. The relation between

our estimate and insecurity yields

εLSB(α⃗) ⩽
1
√
p
+

85/4
√
p

+
13/2

p
.

This completes the proof of the first part of the corollary.

Proof of the second part. We prove that our algorithm outputs “may be inse-
cure” only for an exponentially small fraction of the equivalence classes [α1 : α2],
for distinct evaluation places α1, α2 ∈ F ∗

p .

First, observe that there are (p − 2) equivalence classes [1 : 2], [1 : 3], . . . ,
[1 : (p− 1)] (because α1 ̸= α2 and 0 ̸∈ {α1, α2}).

Next, let us account for the instances when Figure 2 determines evalua-
tion places α⃗ may be insecure. Suppose a = (u/g) and b = (v/g), where
g = gcd(u, v) ∈ {1, 2, . . . }. We need to upper bound the cardinality of the
following set

S :=

{
(a, b) : odd a, odd b, and |a · b| ⩽ √p

}
.

In this set, for any particular a, the corresponding positive b lies in the set
{1, 3, 5, . . . , 2na− 1}, such that (2na− 1) is the largest odd number satisfying a ·
(2na−1) ⩽

√
p. So, the number of potential odd positive b’s is na ⩽ (

√
p+a)/2a.

As a result, the total number of potential positive and negative candidates is at
most (

√
p + a)/a. Let (2s − 1) be the largest odd number ⩽

√
p. Therefore, we

have

card(S) ⩽ 2 ·
∑

a∈{1,3,...,2s−1}

√
p+ a

a
= 2
√
p

(
1 +

1

3
+

1

5
+· · ·+ 1

2s− 1

)
+ 2s

⩽ 2
√
p ·
(
1 +

∫ s

1

1

2t− 1
dt

)
+ (
√
p+ 1)

=
√
p · ln(2s− 1) + 3

√
p+ 1 ⩽

1

2

√
p · ln p+ 3

√
p+ 1.

Note that for every (a, b), we also counted (−a,−b) in this set; both belong
to the same equivalence class. So, every equivalence class is represented at least
twice. Therefore, the number of equivalence classes for which our algorithm out-
puts “may be insecure” is ⩽ card(S) /2. The fraction of equivalence classes that
our algorithm declares “may be insecure” is

⩽
card(S) /2

p− 2
⩽

1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2

p− 2
.
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Asymptotically, the upper bound is ≲ 1
4 ·

ln p√
p . Concretely, Supporting Mate-

rial C.7 proves the upper bound

⩽
ln p

4
√
p
+

5/2
√
p
,

for all p ⩾ 11.

4.3 Statement and Proof of Corollary 3

Corollary 3. Consider distinct evaluation places α⃗ = (α1, α2) and the corre-
sponding ShamirSS(2, 2, α⃗) secret-sharing scheme over the prime field Fp, where

p ⩾ 3. If εLSB(α⃗) >
2·85/4√

p + 13
p , then there is an efficient algorithm that generates

s ∈ F ∗
p and can distinguish the secret 0 from the secret s with an advantage

⩾ εLSB(α⃗) − 2 · 85/4
√
p
− 13

p

by leaking the LSB of the secret shares.

Proof. Our efficient adversary outputs the s indicated in Theorem 1. After ob-
serving the leakage (ℓ1, ℓ2), this algorithm performs maximum likelihood decod-
ing – computes whether secret 0 or secret s is more likely to have generated the
observed leakage. Then, it predicts the most likely of the two events.

We emphasize that the secret s′ ∈ F ∗ that witnesses the maximum statisti-
cal distance between the leakage distributions LSB(Share(0)) and LSB(Share(s′))
may be different from the secret s defined above. Secret s ∈ F ∗ witnesses the
maximum estimate of the statistical distance between the distributions LSB(Share(0))
and LSB(Share(s)).

For brevity, define err := 85/4√
p + 13/2

p . Given α⃗, we run the LLL algorithm [31]

to obtain (u, v) ∈ [α1 : α2] such that |u|p, |v|p ⩽ B, whereB =
⌈
81/4 · √p

⌉
. Define

g = gcd(|u|p, |v|p).
We are given that εLSB(α⃗) > 2 · err. We claim that ε

(OUR)
LSB (α⃗) > err and

|u|p · |v|p/g2 is odd. Suppose not; then, there are two possibilities.

1. If |u|p · |v|p/g2 is even. In this case, ε
(OUR)
LSB (α⃗) = 0 and, hence, εLSB(α⃗) ⩽ err,

by Corollary 1; a contradiction.

2. If ε
(OUR)
LSB (α⃗) ⩽ err and |u|p · |v|p/g2 is odd. In this case, εLSB(α⃗) ⩽ 2 · err, by

Corollary 1; a contradiction.

So, the signs of ε
(OUR)
LSB (α⃗) and

(
1
pΣ

(0)
α1,α2 − 1

p ·Σ
(∆)
α1,α2

)
are identical (by Claim 11).

Using this property, Supporting Material C.8 proves that the advantage of the
maximum likelihood decoder is

⩾ ε
(OUR)
LSB (α⃗)− err ⩾ εLSB(α⃗)− 2 · err.
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4.4 Proof outline of Theorem 1

For any s ∈ F ∗, we prove Lemma 1 that obtains a closed-form estimate of

SD

(
LSB(Share(0)) , LSB(Share(s))

)
.

Then, we can solve for the optimal s ∈ F ∗ that maximizes the statistical distance.

Lemma 1. Consider the ShamirSS(2, 2, (α1, α2)) secret-sharing scheme over a
prime field Fp. For any secret s ∈ F ∗

p and (u, v) ∈ [α1 : α2],

SD

(
LSB(Share(0)) , LSB(Share(s))

)
=

± 4(|u|p+|v|p)−(3/2)

p , if |u|p · |v|p/g2 is even

sin2
(
|v|pπ · δ

)
· g2

|u|p·|v|p
± 4(|u|p+|v|p)−(3/2)

p , if |u|p · |v|p/g2 is odd,

where g = gcd
(
|u|p, |v|p

)
, δ =

signp(∆)·|∆|p
p ∈ Q, and ∆ =

(
s · 2−1

)
·
(
u−1 − v−1

)
∈

F ∗
p .

Supporting Material C.5 proves Lemma 1. Below, we present a high-level overview
of the proof.

Step 1. Using a combinatorial argument, we connect the statistical distance
between the leakages to the difference between two sums of oscillatory functions.

Lemma 2. Consider the ShamirSS(2, 2, (α1, α2)) secret-sharing scheme over a
prime field Fp. For any secret s ∈ Fp and (u, v) ∈ [α1 : α2],

SD

(
LSB(Share(0)) , LSB(Share(s))

)
=

1

2p
·
∣∣∣Σ(0)

u,v −Σ(∆)
u,v

∣∣∣,
where ∆ :=

(
s · 2−1

)
·
(
u−1 − v−1

)
, a linear automorphism over Fp.

Supporting Material C.1 proves Lemma 2.

Step 2. Recall that signp(X = 0) = +1 and sign(x = 0) = 0. Due to this

mismatch, we defined an intermediate function s̃ignp(X = 0) = 0. So, our next

objective is to relate the quantities Σ
(∆)
k,ℓ with Σ̃

(∆)
k,ℓ .

Lemma 3. For any k, ℓ,∆ ∈ Fp,

Σ
(∆)
k,ℓ = Σ̃

(∆)
k,ℓ +

 ∑
T∈{0,∆}

signp(kT ) · signp(ℓ(T −∆))

 .
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Supporting Material C.2 proves Lemma 3.

Step 3. Next, our objective is to estimate the sum 1
p · Σ̃

(∆)
k,ℓ using the integral

I
(δ)
k,ℓ , for an appropriately define δ ∈ R.

Lemma 4. For any k, ℓ,∆ ∈ Fp,

1

p
· Σ̃(∆)

k,ℓ = signp(k) · signp(ℓ) · I
(δ)
|k|p,|ℓ|p

±
4(|k|p + |ℓ|p)− 2

p
,

where δ =
signp(∆)·|∆|p

p ∈ Q.

Supporting Material C.3 proves Lemma 4.

Step 3. Finally, we compute the value of the integral I
(δ)
k,ℓ .

Lemma 5. For any k, ℓ ∈ {1, 2, . . . } and δ ∈ R,

I
(δ)
k,ℓ =


0, if k · ℓ/g2 is even

cos (2ℓπ · δ) · g
2

kℓ , if k · ℓ/g2 is odd.

,

where g = gcd(k, ℓ).

Supporting Material C.4 proves Lemma 5. Intuitively, if the highest power of
2 dividing k is different from the highest power of 2 dividing ℓ, then kℓ/g2 is

even and I
(δ)
k,ℓ = 0. If the highest power of 2 dividing k is identical to the highest

power of 2 dividing ℓ, then kℓ/g2 is odd and I
(δ)
k,ℓ ̸= 0.

Step 4. Sequentially performing the substitutions above, we can estimate the
statistical distance using the integrals, which yields Lemma 1.

Efficient distinguisher construction. We present an efficient maximum like-
lihood distinguisher in Supporting Material C.6.

5 Security against all Physical Bit Leakage

We consider ShamirSS(n = 2, k = 2, (α1, α2)) over the prime field F of order
p ⩾ 3. This section considers p a Mersenne prime, i.e., p = 2λ − 1, where λ is
the security parameter. Some initial Mersenne primes are 3, 7, 31, 127, 8191, and
131071. The largest Mersenne prime, currently known, is 282,589,933 − 1.

5.1 Properties of Mersenne Primes

Mersenne primes have fascinating properties.

Proposition 1. Let F be a prime field of order p = 2λ − 1. Suppose x ∈ F and
define x′ = x · (2i) ∈ F , where i ∈ {−λ+1, . . . , 0, 1, . . . , λ− 1}. Then the binary
representation of x′ is a cyclic left rotation of the binary representation of x by
i bits.
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We clarify that if i is negative, then “i bit cyclic left rotation” is the same
as “|i| bit cyclic right rotation.” This proposition is straightforward from the
identity that 2λ = 1 mod p. Additionally, it implies that 2λ+i = 2i mod p, for
all negative i ∈ {−p+ 1, . . . ,−1}.

Suppose i ∈ {0, 1, . . . , λ− 1}. Let Ei ⊆ {0, 1, . . . , p− 1} = F be the set of all
element x ∈ F such that the binary representation of x has 0 at its i-th position.
We remind the reader that i = 0 indicates the least significant bit, and i = (λ−1)
indicates the most significant bit. We represent E = {0, 2, . . . , (p− 1)/2} as the
set of all “even elements” in F .

Proposition 2. For all i ∈ {0, 1, . . . , λ− 1}, we have Ei = E · (2i).

Note that if x ∈ Ei then x · (2−i) ∈ E. Moreover, for any x′ ∈ E, we have
x · (2i) ∈ Ei. Both these properties hold due to Proposition 1.

5.2 Leakage Resilience to Physical Bit Leakage

Let LSBi : F → {0, 1} represent the function that outputs the i-th least signifi-
cant bit in the binary representation. So, for example, LSB−1

i (0) = Ei = E · (2i).
We aim to investigate the leakage resilience of ShamirSS(2, 2, (α1, α2)) over the
prime field F with order p = 2λ−1 against physical bit leakage attacks. Consider
a leakage attack that leaks the i-th LSB of the first secret share and the j-th
LSB of the second secret share. We represent this leakage as ⃗LSBi,j .

Leakage attack when 2kα1 = α2. Although α1 ̸= α2, it may be possible
that 2kα1 = α2, for some k ∈ {0, 1, . . . , λ− 1}. We prove that the secret-sharing
scheme is insecure, taking care of this case in the algorithm of Figure 1.

Since α1 and α2 are distinct, it must be the case that 2kα1 = α2, where
k ∈ {1, 2, . . . , λ− 1}. Suppose we are leaking the i-th bit of the first secret share
and the j-th bit of the second secret share, such that j − i = k.

Suppose the secret is s ∈ F . Then, the secret share at evaluation place X is
s+ uX, for uniformly random u ∈ F . The joint distribution of leakage is

(LSBi(s+ uα1),LSBj(s+ uα2)) .

Since Ei = E2i and Ej = E2j , this joint distribution is identical to(
LSB0(s2

−i + uα12
−i),LSB0(s2

−j + uα22
−j)
)
.

Define some variable renaming. Let v := u2−j and t := s2−j . The joint distribu-
tion of leakage is (for uniformly random v ∈ F )(

LSB0(t2
k + vα12

k),LSB0(t+ vα2)
)
≡
(
LSB0(t2

k + vα2),LSB0(t+ vα2)
)
,

because 2kα1 = α2.
For t = 0, both the leakage bits are identical. On the other hand, for t =

t∗ := (2k − 1)−1, the joint distribution of leakage is

(LSB0(1 + t∗ + vα2),LSB0(t
∗ + vα2))
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These two leakage bits are different with (1 − 1/p) probability. Therefore, one
can distinguish the secret 0 and secret t∗2j with (1 − 1/p) ∼ 1 advantage by

leaking ⃗LSBi,j ; whence the following lemma follows.

Lemma 6. Let Fp be the prime field of order p = 2λ − 1. Consider distinct
evaluation places α1, α2 ∈ F ∗

p such that 2k ·α1 = α2 for some k ∈ {0, 1, . . . , λ−1}.
Then,

SD

(
⃗LSBi,j(Share(0)) , ⃗LSBi,j(Share(s))

)
⩾ 1− 1

p
,

where i, j ∈ {0, 1, . . . , λ− 1}, j − i = k mod λ, and s = (2k − 1)−1 · 2j.

Reduction to the LSB Attack. Due to the properties of the Fp, where p is a
Mersenne prime, we can reduce arbitrary physical bit attacks on ShamirSS(2, 2, α⃗)

to LSB leakage attacks on ShamirSS(2, 2, α⃗′), for an appropriately defined α⃗′.

Lemma 7. Let Fp be a prime field of order p = 2λ − 1. Consider evaluation
places α1, α2 ∈ F ∗

p such that 2k · α1 ̸= α2, for all k ∈ {0, 1, . . . , λ− 1}. Consider
the leakage attack ⃗LSBi,j for any i, j ∈ {0, 1, . . . , λ − 1}. Define α′

1 = 2−i · α1

and α′
2 = 2−j · α2. For any s ∈ Fp, let D denote the joint leakage distribution

generated by the leakage function ⃗LSBi,j when the secret shares are generated
using the ShamirSS(2, 2, α⃗) secret-sharing scheme. Likewise, D′ denotes the joint

leakage distribution generated by the leakage function ⃗LSB when the secret shares
are generated using the ShamirSS(2, 2, α⃗′) secret-sharing scheme instead. Then,
the distributions D and D′ are identical.

Since 2k ·α1 ̸= α2, for all k ∈ {0, 1, . . . , λ− 1}, we conclude that α′
1 ̸= α′

2, for all

i, j ∈ {0, 1, . . . , λ − 1}. Therefore, the secret-sharing scheme ShamirSS(2, 2, α⃗′)
is valid. Supporting Material C.9 proves that the distributions D and D′ are
identical, for all s ∈ Fp, using Proposition 2.

5.3 Statement and Proof of Corollary 4

Corollary 4. Let Fp be the prime field of order p = 2λ − 1. Consider dis-
tinct evaluation places α⃗ = (α1, α2) and the corresponding secret-sharing scheme
ShamirSS(2, 2, α⃗). Define

ε
(OUR)
PHYS =



1, if 2t · α1 = α2

for some t ∈ {0, 1, . . . , λ− 1},

max
k∈{0,1,...,p−1}

ε
(OUR)
LSB

(
(2kα1, α2)

)
, if 2t · α1 = α2

for all t ∈ {0, 1, . . . , λ− 1}.

Then,

ε
(OUR)
PHYS (α⃗) = εPHYS(α⃗) ±

(
85/4
√
p

+
13/2

p

)
.
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Proof. If 2t · α1 = α2, for some t ∈ {0, 1, . . . , λ − 1}, we have ε
(OUR)
PHYS (α⃗) = 1.

Lemma 6 presents a physical bit leakage attack with distinguishing advantage
1− 1/p; therefore, εPHYS(α⃗) ⩾ 1− 1/p. So, we conclude that

ε
(OUR)
PHYS (α⃗) = εPHYS(α⃗)±

1

p
.

If 2tα1 ̸= α2, for all t ∈ {0, 1, . . . , λ − 1}, Lemma 7 shows that the leak-
age distribution of LSBi,j on ShamirSS(2, 2, α⃗) is identical to the leakage distri-

bution ⃗LSB on ShamirSS(2, 2, (2−iα1, 2
−jαj) ). Recall that the secret-sharing

scheme ShamirSS(2, 2, (2−iα1, 2
−jαj) ) is identical to the secret-sharing scheme

ShamirSS(2, 2, (2j−iα1, αj) ), by Lemma 10 in Supporting Material B. There-
fore, we conclude the following:

εPHYS(α⃗) = max
k∈{0,1,... }

εLSB
(
(2kα1, α2)

)
.

We know that our estimation ε
(OUR)
LSB (·) is a tight estimation of εLSB(·), by Corol-

lary 1. Therefore, we conclude that

ε
(OUR)
PHYS (α⃗) = εPHYS(α⃗) ±

(
85/4
√
p

+
13/2

p

)
.

5.4 Statement and Proof of Corollary 5

Corollary 5. Let Fp be the prime field of order p = 2λ − 1. Consider distinct
evaluation places α⃗ = (α1, α2) and the corresponding ShamirSS(2, 2, α⃗) secret-
sharing scheme over the prime field Fp. Suppose the algorithm in Figure 1 de-
termines α⃗ to be secure. Then,

εPHYS(α⃗) ⩽
1 + 85/4
√
p

+
13/2

p
.

Among all possible distinct evaluation places α1, α2 ∈ F ∗
p , the algorithm of Fig-

ure 2 determines at least

⩾ 1 − ln p

ln 2
·

1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2

p− 2
⩾(∗) 1 − ln p

ln 2
·
(

ln p

4
√
p
+

5/2
√
p

)
.

fraction of them to be secure. The (∗) inequality holds for all p ⩾ 11.

Proof. Proof of the first part. If the algorithm in Figure 1 determined (α1, α2)
to be secure, then the algorithm in Figure 2 determined (2kα1, α2) to be secure,
for all k ∈ {0, 1, . . . , λ− 1}. For k ∈ {0, 1, . . . , λ− 1}, by Corollary 2, we get the
bound that

εLSB
(
(2kα1, α2)

)
⩽

1 + 85/4
√
p

+
13/2

p
.
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Just like the proof of Corollary 4, we have

εPHYS(α⃗) = max
k∈{0,1,...,λ−1}

εLSB
(
(2kα1, α2)

)
⩽

1 + 85/4
√
p

+
13/2

p
.

Proof of the second part. If the algorithm in Figure 1 outputs “may be
insecure” then there is some k ∈ {0, 1, . . . , λ − 1} such that the algorithm in
Figure 2 outputs “may be insecure” for (2kα1, α2). Corollary 2 proves that the
algorithm in Figure 2 outputs “may be insecure” for at most

1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2

p− 2

fraction of the equivalence classes. By, a union bound over k ∈ {0, 1, . . . , λ− 1},
Figure 1 outputs “may be insecure” for at most

log2 p ·
1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2

p− 2

fraction of the equivalence classes.

5.5 Statement and Proof of Corollary 6

Corollary 6. Let Fp be the prime field with order p = 2λ− 1. Consider distinct
evaluation places α⃗ = (α1, α2) and the corresponding ShamirSS(2, 2, α⃗) over Fp.

If εPHYS(α⃗) >
2·85/4√

p + 13
p , then there is an efficient algorithm that generates

(s, f) ∈ F ∗
p × PHYS and can distinguish the secret 0 from the secret s with an

advantage

⩾ εPHYS(α⃗) − 2 · 85/4
√
p
− 13

p

by leaking f from the secret shares.

Proof. If there is t ∈ {0, 1, . . . , λ − 1} such that 2tα1 = α2, then Lemma 6
presents an explicit leakage attack that suffices for this corollary.

If there 2tα1 ̸= α2 for all t ∈ {0, 1, . . . , λ−1}, then Lemma 7 helps relate phys-

ical bit attacks and LSB attacks. Suppose k is the witness such that ε
(OUR)
PHYS (α⃗) =

ε
(OUR)
LSB

(
(2kα1, α2)

)
. Then, consider the adversary against ShamirSS(2, 2, (2kα1, α2) ; )

that uses the LSB attack as guaranteed by Corollary 3. Lemma 7 proves that
the leakage distribution of the physical bit attack ⃗LSB0,k on ShamirSS(2, 2, α⃗)
secret-sharing scheme has an identical distribution. So, we run the adversary of
Corollary 3 by leaking ⃗LSB0,k from the secret shares of the ShamirSS(2, 2, α⃗)
secret-sharing scheme.
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5.6 Statement and Proof of Corollary 7

Corollary 7. Let Fp be the prime field of order p = 2λ − 1. Define t := ⌊λ/2⌋.
Consider α⃗ = (α1, α2) ∈ [1 : 2t − 1]. Then

εPHYS(α⃗) ⩽
4 ·
(
2⌊λ/2⌋ + 2⌈λ/2⌉

)
− 6

p
.

Proof. For the proof, fix α1 = 1 and α2 = 2⌊λ/2⌋−1. We shall compute εLSB(2
i ·

α1, α2) for all i ∈ {0, 1, . . . , λ − 1} using Lemma 1. The bound in our corollary
will be the maximum of these individual upper bounds on εLSB(·).
Case A: i = 0. We are interested in computing the security of the evaluation
places (2iα1, α2) We use (u, v) = (1, 2t − 1), where t = ⌊λ/2⌋. Note that u, v are
relatively prime and |u|p = 1 and |v|p = 2t− 1. Both these evaluation places are
odd. Therefore, by Lemma 1, we have

εLSB(2
i · α1, α2) ⩽

1

2t − 1
+

4 + 4 · (2t − 1)− 2

p
.

Case B: 1 ⩽ i ⩽ ⌊λ/2⌋. We are interested in the security of (u, v) = (2i, 2t− 1),
where t = ⌊λ/2⌋. Note that u and v are relatively prime, u is even, and v is odd.
Therefore, by Lemma 1, we have

εLSB(2
i · α1, α2) ⩽

4 · 2i + 4 · (2t − 1)− 2

p
.

Case C: ⌊λ/2⌋ + 1 ⩽ i ⩽ λ − 1. We are interested in the security of (u, v) =
(2i, 2t−1), where t = ⌊λ/2⌋. Note that t+1 ⩽ i ⩽ λ−1. Define (u′, v′) := 2λ−t ·
(u, v) ∈ [u : v]. Observe that

u′ = 2λ−t · u mod 2λ − 1 = 2i−t

v′ = 2λ−t · v mod 2λ − 1 = −(2λ−t − 1).

Substitute u′ = 2j , where 1 ⩽ j ⩽ ⌊λ/2⌋, and v′ = −(2λ−t − 1). Therefore, by
Lemma 1, we have

εLSB(2
i · α1, α2) ⩽

4 · 2j + 4 · (2λ−t − 1)− 2

p
.

Supporting Material C.10 proves the following upper bound on the insecurity
for all 0 ⩽ i < λ.

εLSB(2
i · α1, α2) ⩽

4 · (2⌊λ/2⌋ + 2⌈λ/2⌉)− 6

p
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6 Extension to arbitrary Number of Parties

We extend our derandomization results to Shamir’s secret-sharing scheme with
the reconstruction threshold k equal to the number of parties n ∈ {2, 3, . . . }. We
prove the following general lifting theorem. Corollary 8 is a consequence of this
theorem.

Theorem 2. Consider ShamirSS(n, n, α⃗) over a prime field F . For every i ∈
{1, 2, . . . , n}, define βi :=

(
αi

∏
j ̸=i(αi − αj)

)−1

. Suppose there are two indices

1 ⩽ i∗ < j∗ ⩽ n such that ShamirSS(2, 2, (βi∗ , βj∗)) has ε-insecurity against
physical bit leakages. Then, ShamirSS(n, n, (α1, α2, . . . , αn)) has at most 2ε-insecurity
against physical bit leakages.

The proof of this theorem is Fourier-analytic and uses properties of the Gener-
alized Reed-Solomon codes.

Generalized Reed-Solomon Code. A generalized Reed-Solomon code over a
prime field F with message length k and block length n consists of an encoding
function Enc : F k → Fn and decoding function Dec : Fn → F k. It is specified by
distinct evaluation places α⃗ = (α1, . . . , αn) and a scaling vector u⃗ such that for
all 1 ⩽ i ⩽ n, ui ∈ F ∗. Given α⃗ and u⃗, the encoding function is

Enc(m1, . . . ,mk) := (u1 · f(α1), . . . , un · f(αn)) ,

where f(X) := m1+m2X+· · ·+mkX
k−1. We represent this code as [n, k, α⃗, u⃗]F -

GRS.

The following standard properties of generalized Reed-Solomon codes shall
be helpful for our extension to an arbitrary number of parties [20, 32].

Imported Theorem 1 (Properties of GRS) The dual code of [n, k, α⃗, u⃗]F -
GRS is identical to the [n, n− k, α⃗, v⃗]F -GRS, where for all 1 ⩽ i ⩽ n,

v−1
i := ui

n∏
j=1
j ̸=i

(αi − αj) .

In particular, when n = k, the dual code is the set {β · (v1, v2, . . . , vn) : β ∈ F},
a dimension one vector space over F .

We will apply this theorem to the dual of the code containing all possible secret
shares of the secret 0 in [n, n, α⃗]-Shamir secret-sharing.

Since the proof of Theorem 2 is entirely Fourier-analytic, it is presented in
Supporting Material D along with a brisk introduction to (elementary) Fourier
analysis.
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6.1 Statement and Proof of Corollary 8

Corollary 8. Let Fp be the prime field of order p = 2λ − 1. Fix any n ∈
{3, 4, . . . }. There is a probabilistic efficient algorithm to choose distinct eval-
uation places α⃗ such that

εPHYS(α⃗) ⩽
2 · 85/4
√
p

+
13

p
.

The failure probability of this algorithm is

⩽
n+ 1

p
+

(
1

4 ln 2
· (ln p)

2

√
p

+
5

2 ln 2
· ln p√

p

)
.

Proof. Choose arbitrary distinct evaluation places α1, α2, α4, . . . , αn ∈ F ∗
p . Choose

α3 uniformly at random from the set Fp \ {α1}. The probability that the evalu-
ation places (α1, α2, . . . , αn) are not all distinct is

⩽
n− 2

p
.

Define βi :=
(
αi(
∏

j ̸=i(αi − αj)
)−1

as in Theorem 2, for i ∈ {1, . . . , n}. Ob-

serve that choosing α⃗ at random does not necessarily imply that β⃗ is uniformly
and independently random over Fp. For this paper, we will prove a result that
is easy to prove and sufficient for our context.

Lemma 8. For n ⩾ 3, the distribution of the equivalence class [β1 : β2] is
2/(p−1)-close to the uniform distribution over the equivalence classes [1 : 2], [1 :
3], . . . , [1 : p− 1], for

1. Arbitrary α1, α2 ∈ F ∗
p such that α1 ̸= α2,

2. Arbitrary α4, . . . , αn satisfying {α1, α2} ∩ {α4, . . . , αn} = ∅, and
3. The evaluation place α3 is chosen uniformly at random from the set Fp\{α1}.

Supporting Material F.1 proves this lemma. We use the algorithm in Figure 1 to
test whether evaluation places in the equivalence class [β1 : β2] is ε-secure, where

ε ⩽
85/4
√
p

+
13/2

p
.

This guarantee is from Corollary 5. The probability of the algorithm in Figure 1
to return “may be insecure” is also exponentially small

⩽

(
1

4 ln 2
· (ln p)

2

√
p

+
5

2 ln 2
· ln p√

p

)
(again by Corollary 5). If no such pair of secure indices exit, then report failure.
Otherwise, if one such pair exists, by Theorem 2, ShamirSS(n, n, α⃗) has insecurity

εPHYS(α⃗) ⩽ 2ε.
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By union bound, the failure probability is

⩽
n− 2

p
+

2

p− 1
+

(
1

4 ln 2
· (ln p)

2

√
p

+
5

2 ln 2
· ln p√

p

)
⩽
n+ 1

p
+

(
1

4 ln 2
· (ln p)

2

√
p

+
5

2 ln 2
· ln p√

p

)
. (for p ⩾ 3)

One can boost the success probability exponentially by repeating this experi-
ment.

7 The Case of (n, k) = (3, 2)

Lemma 9. Let Fp be a prime field of order p = 2λ−1. Consider distinct evalu-
ation places (α1, α2, α3). Let ε(α⃗) denote the insecurity of the ShamirSS(3, 2, α⃗)
secret-sharing scheme against physical bit leakage attacks. For 1 ⩽ i < j ⩽ 3, de-
note the insecurity of the ShamirSS(2, 2, (αi, αj)) secret-sharing scheme against
physical bit leakage attacks by εPHYS(αi, αj). Then,

εPHYS(α⃗) ⩽
∑

1⩽i<j⩽3

εPHYS(αi, αj) +
1

p
.

Supporting Material E presents the full proof of this lemma. Note that if εPHYS(αi, αj)
is large, then there is a leakage attack on ShamirSS(3, 2, α⃗).

8 Prior Related Works

Local leakage resilience. Several works have constructed new secret-sharing
schemes that are resilient to leakage attacks [7, 2, 45, 3, 29, 8, 15, 16, 23, 13,
38, 11]. There is a significant interest in characterizing the leakage-resilience of
practical secret-sharing schemes, like the additive and Shamir’s secret-sharing
scheme. [33] proved that, for reconstruction threshold k = 2 and an arbitrary
number of parties n, choosing evaluation places at random yields a leakage-
resilient Shamir secret-sharing scheme with high probability against physical bit
leakage. A sequence of works also determined the optimal leakage attack [33, 1,
35]. Other Monte Carlo constructions have also been proposed in [37, 34].

Another flavor of results characterizes the leakage-resilience of Shamir’s secret-
sharing scheme for a large number of parties. For example, when k ⩾ 0.78n,
Shamir’s secret-sharing scheme (with any evaluation places) is leakage-resilient
to (arbitrary) one-bit local leakage. Here the insecurity is exponentially small in
n [5, 6, 37, 36]. Contrast this with our scenario, where the insecurity is exponen-
tially small in the security parameter, which is independent of n. [40] proved that
Shamir’s secret-sharing scheme is insecure to local leakage when n/k is large.

Square wave function families. Various families of square waves find wide
applications in science and engineering. For example, consider the ones proposed
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by Haar [19], Walsh [48], and Rademacher [41]. In our work, we connect the
leakage resilience of secret-sharing schemes with the properties of another family
of square waves (see for example [47, 22, 21]){

sign sin(2πk · x)
}

k∈Z
.

Previous works [47, 22] have studied the orthogonality of this family of waves.
Our objective is to study, more generally, the “similarity” among these waves
and their offsets – functions of the form sign sin(2πk · (x − δ)), for δ ∈ R. Zero
similarity, in our context, coincides with orthogonality.

Simultaneous Diophantine Approximation. Solving simultaneous Diophan-
tine approximation problems is a well-studied problem. This problem arises when
choosing a “good basis” for a lattice. In our context, for an odd prime p, given
distinct α1, α2 ∈ {1, 2, . . . , p − 1}, our objective is to find q ∈ {1, 2, . . . , p − 1}
such that qα1 mod p and qα2 mod p are either in the range {1, . . . ,√p} or
{p−√p, . . . , p− 1}. The integers qα1 mod p and qα2 mod p, intuitively, have
“small norm mod p.” We will use the classical LLL algorithm [31] to efficiently
achieve this objective (see Supporting Material A).

The Dirichlet approximation theorem [43, 44] states that, for any α ∈ Rd

and any positive integer N , there is a denominator 1 ⩽ q ⩽ Nd such that

max
i∈{1,2,...,d}

{qαi} ⩽
1

N
.

Computing this solution is computationally challenging [30]. However, we can
efficiently solve this problem by slightly weakening the upper bound on q. The
seminal LLL algorithm [31], in particular, for α ∈ Qd, finds 1 ⩽ q ⩽ 2d(d+1)/4 ·Nd

such that

max
i∈{1,2,...,d}

{qαi} ⩽
1

N
.

9 Open Problems and Technical Bottlenecks

Motivated by applications in leakage-resilient MPC [25], there is a significant
interest in designing explicit secret-sharing schemes for various access structures
(for example, threshold and Q2 access structures) that are resilient to leakage
attacks. Our results contribute to this general research area. Below, we highlight
some immediate extensions of our work and their technical challenges.

Investigating the case of composite order fields for our problem is open. Even
the probabilistic version of this problem is open for composite order fields – [33]
proved their probabilistic result only for prime fields. Näıvely interpreting Fpt

as an Fp-ring is insufficient. Vulnerabilities to physical bit leakage are associated
with the binary representation of the field elements. The monic deg t irreducible
polynomial Π(Z), such that Fpt ∼= Fp[Z]/Π(Z), determines this representation.
Therefore, the characterization of secure evaluation places must account for this
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irreducible polynomial Π(Z). So, more fundamentally, are there “better” or
“worse” choices for the irreducible polynomial?

Investigating our problem for n > k poses non-trivial technical challenges,
even for prime fields. For our n = k case, studying leakage-resilience required
determining the “similarity” between two square waves. For the n > k case,
one needs to determine the “higher-order correlations” among three or more
square waves. For example, three square waves can generate eight sign tuples
(σ1, σ2, σ3) ∈ {±1}3. Leakage resilience corresponds to the probability of these
signs being independent of the secret. Generalizing our technical approach for
the (n, k) = (3, 2) case while ensuring ⩽ 1/

√
p insecurity seems challenging.1

Leaking multiple bits from each secret share also encounters similar techni-
cal challenges. In particular, characterizing higher-order correlations is required.
Furthermore, instead of square waves (where the peaks and troughs have iden-
tical length) one needs to analyze more general waves whose peaks and troughs
have very different lengths.
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A Solving Simultaneous Diophantine Equations

Figure 5 presents our algorithm. In this section, the “LLL algorithm” refers to
the algorithm with the following guarantees.

Imported Theorem 2 (LLL [31, Proposition 1.39]) There exists a polynomial-
time algorithm that, given a positive integer d and rational numbers r1, r2, . . . , rd, ε
satisfying 0 < ε < 1, finds integers s1, s2, . . . , sd, and t for which

|si − t · ri| ⩽ ε,

for 1 ⩽ i ⩽ d and 1 ⩽ t ⩽ 2d(d+1)/4 · ε−d.

Input. α1, α2 ∈ F ∗, where F is the prime field of order p

Output. Elements u, v ∈ F ∗ such that (u, v) ∈ [α1 : α2] and

u, v ∈ {−B,−(B − 1), . . . , 0, 1, . . . , (B − 1), B} mod p,

where B :=
⌈
23/4 · √p

⌉
.

Algorithm.
1. Interpret α1, α2 ∈ {0, 1, . . . , p− 1} as positive integers
2. Define d = 2
3. Define r1 = α1/p ∈ Q and r2 = α2/p ∈ Q
4. Define ε = B/p ∈ Q
5. Use the LLL algorithm to find integers s1, s2, and t
6. Interpret t as an element of F . Define u = α · t ∈ F and v = α · t ∈ F

Fig. 5. Our Algorithm to obtain (u, v) from (α1, α2) using the LLL-algorithm.

Let us proceed to analyze our algorithm of Figure 5. The parameter setting
needs to ensure that t ⩽ 2d(d+1)/4ε−d < p. Recall that ε = B/p. Substituting this
value and rearranging, one needs to ensure that 2d(d+1)/4 · pd−1 < B. Therefore
we have chosen B =

⌈
2(d+1)/4p1−1/4

⌉
. Consequently, one can interpret t as an

F ∗ element.

By definition, (u, v) ∈ [α1 : α2] because u = t · α1 and v = t · α2. Next, note
that

|α1 · t− s1 · p| ⩽ ε · p = B, and |α2 · t− s2 · p| ⩽ ε · p = B.

This argument completes the analysis that for every (α1, α2) how we obtain
(u, v) ∈ [α1 : α2] such that u and v are “small (positive/negative) numbers.”
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B Equivalence classes for Evaluation Places

Consider Shamir’s secret-sharing scheme among n parties with reconstruction
threshold k over the prime field F of order p ⩾ 3. The secret-sharing scheme is
the Massey secret-sharing scheme [39] corresponding to the (punctured) Reed-
Solomon code with evaluation places (0, α1, α2, . . . , αn). That is, the dealer
chooses a random F -polynomial P (Z) of degree < k conditioned on P (Z =
0) being the secret s. Evaluating this polynomial at evaluation places Z =
α1, α2, . . . , αn generates the secret shares s1, s2, . . . , sn, respectively.

Lemma 10 (Equivalence Classes of Evaluation Places). The (punctured)
Reed-Solomon code corresponding to evaluation places (0, α1, α2, . . . , αn) is iden-
tical to the (punctured) Reed-Solomon code corresponding to evaluation places
(0, Λ · α1, Λ · α2, . . . , Λ · αn), for any Λ ∈ F ∗.

This proposition is a consequence of the properties of Generalized Reed-Solomon
codes [20, 32]. In particular, since the linear codes are identical, the correspond-
ing Massey secret-sharing schemes have identical resilience/vulnerability to at-
tacks. That is, the ShamirSS(n, k, (α1, α2, . . . , αn)) and the ShamirSS(n, k, (Λ ·
α1, Λ·α2, . . . , Λ·αn)) secret-sharing schemes have identical resilience/vulnerability
to attacks, for any Λ ∈ F ∗. Therefore, for given distinct evaluation places
α1, α2, . . . , αn ∈ F ∗, we define the equivalence class

[α1 : α2 : · · · : αn] := {(Λ · α1, Λ · α2, . . . , Λ · αn) : Λ ∈ F ∗} .

Determining the security of the evaluation places (α1, . . . , αn) is equivalent to
determining the security of any element in the equivalence class [α1 : · · · : αn].

C Proof of Technical Lemmas

C.1 Proof of Lemma 2

Consider the ShamirSS(2, 2, (α1, α2)) secret-sharing scheme over a prime field
Fp. Consider an arbitrary secret s ∈ Fp and evaluation places (u, v) ∈ [α1 : α2].

2SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
=

∑
ℓ⃗∈{0,1}2

∣∣∣Pr [ ⃗LSB(Share(0)) = ℓ⃗
]
− Pr

[
⃗LSB(Share(s)) = ℓ⃗

]∣∣∣
=

∑
ℓ⃗∈{0,1}2

∣∣∣∣E
X

[
1LSB−1(ℓ1)(uX) · 1LSB−1(ℓ2)(vX)

]
− E

X

[
1LSB−1(ℓ1)(uX + s) · 1LSB−1(ℓ2)(vX + s)

]∣∣∣∣
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Claim 1 For ℓ ∈ {0, 1} and X ∈ Fp, we have

1LSB−1(ℓ)(X) =
1

2

(
1 + (−1)ℓ · signp(X · 2−1)

)
.

Substituting, we get

2SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
=

∑
ℓ⃗∈{0,1}2

∣∣∣∣∣EX
[(

1 + (−1)ℓ1 signp(uX · 2−1)

2

)
·

(
1 + (−1)ℓ2 signp(vX · 2−1)

2

)]

− E
X

[(
1 + (−1)ℓ1 signp((uX + s) · 2−1)

2

)
·

(
1 + (−1)ℓ2 signp((vX + s) · 2−1)

2

)]∣∣∣∣∣
=

1

4
·
∑

ℓ⃗∈{0,1}2

∣∣∣∣E
X

[
signp(uX · 2−1) · signp(vX · 2−1)

]
−E

X

[
signp((uX + s) · 2−1) · signp((vX + s) · 2−1)

]∣∣∣∣
=

∣∣∣∣E
X

[
signp(uX · 2−1) · signp(vX · 2−1)

]
−E

X

[
signp((uX + s) · 2−1) · signp((vX + s) · 2−1)

]∣∣∣∣
=

1

p
·

∣∣∣∣∣∣
∑

X∈Fp

signp(uX · 2−1) · signp(vX · 2−1)−
∑

X∈Fp

signp((uX + s) · 2−1) · signp((vX + s) · 2−1)

∣∣∣∣∣∣
=

1

p
·

∣∣∣∣∣∣
∑
Y ∈Fp

signp(uY ) · signp(vY )−
∑
Z∈Fp

signp(uZ) · signp(v(Z − s · 2−1 · (u−1 − v−1)))

∣∣∣∣∣∣
The last step uses the renaming X · 2−1 7→ Y (an F automorphism) and (X +
s · u−1) · 2−1 7→ Z (an F automorphism).

Therefore,

SD

(
LSB(Share(0)) , LSB(Share(s))

)
=

∣∣∣Σ(0)
u,v −Σ(∆)

u,v

∣∣∣
2p

,

where ∆ :=
(
s · 2−1

)
·
(
u−1 − v−1

)
, a linear automorphism over Fp.

C.2 Proof of Lemma 3

For k, ℓ,∆ ∈ Fp, the proof follows directly from our definition ofΣ
(∆)
k,ℓ , signp(X), Σ̃

(∆)
k,ℓ ,

and s̃ignp(X). The primary observation is that signp(X) = s̃ignp(X), for all
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X ∈ F ∗
p , and s̃ignp(X = 0) = 0.

Σ
(∆)
k,ℓ =

∑
T∈F

signp(kT ) · signp(ℓ(T −∆))

=

(∑
T∈F

s̃ignp(kT ) · s̃ignp(ℓ(T −∆))

)
+

 ∑
T∈{0,∆}

signp(kT ) · signp(ℓ(T −∆))


=Σ̃

(∆)
k,ℓ +

 ∑
T∈{0,∆}

signp(kT ) · signp(ℓ(T −∆))


The expressions above do not require 0, ∆,∆′ to be distinct.

C.3 Proof of Lemma 4

Claim 2 (Transference Property) For all k,∆ ∈ Fp, X ∈ Z, X = X ′ mod p, x =
X ′/p ∈ 1

p · Z, and δ = ∆/p ∈ 1
p · Z,

s̃ignp(k · (X −∆)) = φ(k · (x− δ)).

Claim 3 For k,∆ ∈ Fp and x ∈ 1
p ·Z, define δ :=

∆
p ∈

1
p ·Z and δ′ :=

signp(∆)·|∆|p
p ∈

1
p · Z, then

φ(k · (x− δ)) = φ(k · (x− δ′)).

Proof. Consider the following exhaustive case analysis.

– Case 1: ∆ ∈ {0, 1, . . . , (p− 1)/2}. In this scenario, signp(∆) = 1, |∆|p = ∆
and δ = δ′. Then, φ(k · (x− δ)) = φ(k · (x− δ′)).

– Case 2: ∆ ∈ {(p + 1)/2, (p + 3)/2, . . . , p − 1}. In this scenario, signp(∆) =
−1, |∆|p = p−∆ and δ′ = δ − 1. Then,

φ(k · (x− δ′)) =φ(k · (x− δ + 1))

= sign(sin(2πk · (x− δ + 1)))

= sign(sin(2πk · (x− δ) + 2πk))

= sign(sin(2πk · (x− δ)))
=φ(k · (x− δ))

⊓⊔

Claim 4 For k ∈ Fp and x, δ ∈ 1
p · Z, the following holds.

φ(k · (x− δ)) = signp(k) · φ(|k|p · (x− δ)).

Proof. Consider the following exhaustive case analysis.
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– Case 1: If k ∈ {0, 1, . . . , (p−1)/2}, |k|p = k, signp(k) = 1 and φ(k ·(x−δ)) =
signp(k) · φ(|k|p · (x− δ)) holds by simply plugging in the values.

– Case 2: If k ∈ {(p + 1)/2, (p + 3)/2, . . . , p − 1}, then |k|p = p − k, and
signp(k) = −1. Substituting in signp(k) · φ(|k|p · (x− δ)), we get

signp(k) · φ(|k|p · (x− δ)) = sign(sin(2π|k|p · (x− δ))) (|k|p = p− k)
= signp(k) · sign(sin(2π(p− k) · (x− δ)))
= signp(k) · sign(sin(2π(px− pδ)− 2πk · (x− δ)))

(x, δ ∈ 1
p · Z =⇒ px, pδ ∈ Z)

= signp(k) · sign(sin(−2πk · (x− δ)))
=− signp(k) · sign(sin(2πk · (x− δ)))

(signp(k) = −1)
= sign(sin(2πk · (x− δ)))
=φ(k · (x− δ))

⊓⊔

Given the Transference Property (Claim 2), Claim 3 and Claim 4, we observe

that for k, ℓ,∆ ∈ Fp, T ∈ F, t = T/p ∈ Q and δ =
signp(∆)·|∆|p

p ∈ Q,

Σ̃
(∆)
k,ℓ =

∑
T∈F

s̃ignp(kT ) · s̃ignp(ℓ(T −∆))

=
∑

t∈{ 0
p ,

1
p ,...,

p−1
p }

signp(k) · signp(ℓ) · φ(|k|pt) · φ(|ℓ|p(t− δ))

Definition 1 (Number of Oscillations). A Boolean function f : [0, 1] →
{±1} oscillates at x ∈ [0, 1) if f(x) ̸= lim

h→0+
f(x + h). The number of oscilla-

tions is the cardinality of the following set.{
x : f(x) ̸= lim

h→0+
f(x+ h)

}
.

Since our functions are periodic with period 1, counting the number of oscilla-
tions in the interval [0, 1) in our context suffices.

By straightforward counting, one concludes the following.

Claim 5 (Counting Number of Oscillations) For any |k|p, |ℓ|p ∈ {1, . . . , (p− 1)/2},

1. φ(|ℓ|p(x− δ)) oscillates (2|ℓ|p − 1) times, if δ ∈ 1
2|ℓ|p
· Z

2. φ(|ℓ|p(x− δ)) oscillates 2|ℓ|p times, if δ ̸∈ 1
2|ℓ|p
· Z

3. φ(|k|px)·φ(|ℓ|p(x−δ)) oscillates 2(|k|p+|ℓ|p)−2 times, if δ ∈ 1
2|k|p
·Z∩ 1

2|ℓ|p
·Z

4. φ(|k|px)·φ(|ℓ|p(x−δ)) oscillates 2(|k|p+|ℓ|p)−1 times, if δ ̸∈ 1
2|k|p
·Z∩ 1

2|ℓ|p
·Z
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We prove a general result connecting Boolean functions’ sum and the integral.

Claim 6 (Sum and Integral Connection) Fix an integer n ∈ {1, 2, . . . }.
Let f : [0, 1]→ {±1} be a Boolean function that oscillates H times in the range
[0, 1]. Then,

1

n
·

∑
t∈{ 0

n , 1
n ,...,n−1

n }
f(t) ∈

∫ 1

0

f(t) dt± 2H

n
.

Proof. Consider an interval [r, r + 1/n), for r ∈ {0/n, 1/n, . . . , (n − 1)/n}. If f
does not oscillate in this interval, then f is constant in the interval, and we
conclude

1

n
· f(t) =

∫ r+1/n

r

f(t) dt.

If f oscillates at some point in this interval, then (due to f being Boolean) we
conclude

1

n
· f(t) ∈ [−1/n, 1/n] ⊆

∫ r+1/n

r

f(t) dt± 2

n
.

Adding over all r ∈ {0/n, 1/n, . . . , (n− 1)/n}, we get the claim. ⊓⊔

Consider f(t) = signp(k) · signp(ℓ) · φ(|k|pt) · φ(|ℓ|p(t− δ)), as a consequence
of Claim 5 and Claim 6, we conclude Lemma 3.

For any k, ℓ,∆ ∈ Fp and δ =
signp(∆)·|∆|p

p ∈ Q.

1

p
· Σ̃(∆)

k,ℓ =

signp(k) · signp(ℓ) · I
(δ)
|k|p,|ℓ|p

± 4(|k|p+|ℓ|p)−4

p if δ ∈ 1
2|k|p

· Z ∩ 1
2|ℓ|p
· Z

signp(k) · signp(ℓ) · I
(δ)
|k|p,|ℓ|p

± 4(|k|p+|ℓ|p)−2

p if δ ̸∈ 1
2|k|p

· Z ∩ 1
2|ℓ|p
· Z

Combining the two cases, we get

1

p
· Σ̃(∆)

k,ℓ = signp(k) · signp(ℓ) · I
(δ)
|k|p,|ℓ|p

±
4(|k|p + |ℓ|p)− 2

p
.

C.4 Proof of Lemma 5

To begin, we formalize the orthogonal properties of the sine and cosine functions.

Proposition 3 (Orthogonality of Sine/Cosine Waves [28, Page 38]). For
k, ℓ ∈ {1, 2, . . . } ∫ 1

0

sin(2kπt) · sin(2ℓπt) dt =

{
0, if k ̸= ℓ
1
2 , if k = ℓ.∫ 1

0

sin(2kπt) · cos(2ℓπt) dt = 0.
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For the periodic square wave [47, 22, 21] φ : R→ {−1, 0,+1}.

φ(x) := sign sin(2πx),

[22] uses (basic) Fourier analysis and Proposition 3 to determine the Fourier
expansion of φ(x).

φ(x) =
∑

odd n>0

4

πn
· sin(2nπx). (11)

We prove the following claim for standardization.

Claim 7 For k, ℓ ∈ Fp and δ ∈ R, the following identity holds

I
(δ)
k,ℓ = I

(δ)
k/g,ℓ/g,

where g = gcd(k, ℓ).

Proof. Define ψ
(δ)
k,ℓ(x) := φ(kx) · φ(ℓ · (x− δ)).

Observe that ψ
(δ)
k,ℓ(x) = ψ

(δ)
k,ℓ(x + 1/d), for any d that divides both k and ℓ.

Let g = gcd(k, ℓ). So, from our observation, we conclude that ψ
(δ)
k,ℓ has period

1/g. Therefore, we conclude that

I
(δ)
k,ℓ = g ·

∫ 1/g

0

ψ
(δ)
k,ℓ(t) dt.

Next, note that ψ
(δ)
k,ℓ(x) = ψ

(δ)
k/d,ℓ/d(d · x), for any d that divides both k and

ℓ. Therefore, we get

I
(δ)
k,ℓ = g ·

∫ 1/g

0

ψ
(δ)
k/g,ℓ/g(gt) dt.

By substituting the variable r = gt, we get

I
(δ)
k,ℓ = g ·

∫ 1

0

ψ
(δ)
k/g,ℓ/g(r) ·

1

g
· dr = I

(δ)
k/g,ℓ/g.

⊓⊔

Previously only I
(0)
k,ℓ was studied [47, 22]. In particular, motivated by our

application scenario, we study I
(δ)
k,ℓ , for all δ ∈ R. To begin our analysis, we

assume that k and ℓ are relatively prime.

Claim 8 For relatively prime k, ℓ ∈ Fp such that k · ℓ is even, I
(δ)
k,ℓ = 0, for all

δ ∈ R.
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Proof. Suppose k is even, and ℓ is odd. In this case, for any odd m,n > 0,
observe that

sin

(
2nπ · k

(
1

2
+ t

))
· sin

(
2mπ · ℓ

(
1

2
+ t− δ

))

= sin

2nπ · kt
+

nk︸︷︷︸
even

·π

 · sin
2mπ · ℓ(t− δ)

+
mℓ︸︷︷︸
odd

·π


= sin(2nπ · kt) · ( − sin(2mπ · ℓ(t− δ)) )

Therefore,∫ 1

0

sin(2nπ · kt) · sin(2mπ · ℓ(t− δ)) dt =
∫ 1/2

0

sin(2nπ · kt) · sin(2mπ · ℓ(t− δ)) dt

+

∫ 1

1/2

sin(2nπ · kt) · sin(2mπ · ℓ(t− δ)) dt

=

∫ 1/2

0

sin(2nπ · kt) · sin(2mπ · ℓ(t− δ)) dt

−
∫ 1/2

0

sin(2nπ · kt) · sin(2mπ · ℓ(t− δ)) dt

= 0. (12)

Now, we can prove the lemma.

I
(δ)
k,ℓ =

∫ 1

0

φ(kt) · φ(ℓ(t− δ)) dt

=
16

π2

∑
odd n>0

∑
odd m>0

1

mn

∫ 1

0

sin(2nπ · kt) · sin(2mπ · ℓ(t− δ)) dt

(By Equation 11)

= 0 (By Equation 12)

Finally, if k is odd and ℓ is even, then

sin

(
2nπ · k

(
1

2
+ t

))
· sin

(
2mπ · ℓ

(
1

2
+ t− δ

))

= sin

2nπ · kt
+

nk︸︷︷︸
odd

·π

 · sin
2mπ · ℓ(t− δ)

+
mℓ︸︷︷︸
even

·π


= ( − sin(2nπ · kt) ) · sin(2mπ · ℓ(t− δ))

Again, Equation 12 holds, and the proof of this case goes through. ⊓⊔
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Claim 9 For relatively prime k, ℓ ∈ {1, 2, . . . } such that k · ℓ is odd,

I
(δ)
k,ℓ =

cos(2ℓπ · δ)
kℓ

,

for all δ ∈ R. Therefore, I(δ)k,ℓ achieves its maximum at δ ∈ 1
ℓ ·Z, and the minimum

at δ ∈ 1
2ℓ +

1
ℓ · Z.

Proof. We begin with a generalization of Proposition 3.

Claim. ∫ 1

0

sin(2kπt) · sin(2ℓπ(t− δ)) dt =

{
0, if k ̸= ℓ
1
2 cos(2ℓπδ), if k = ℓ.

Proof (of the claim above).∫ 1

0

sin(2kπt) · sin(2ℓπ(t− δ)) dt =
∫ 1

0

sin(2kπt) · sin(2ℓπt) cos(2ℓπδ) dt

−
∫ 1

0

sin(2kπt) · cos(2ℓπt) sin(2ℓπδ) dt

= cos(2ℓπδ)

∫ 1

0

sin(2kπt) · sin(2ℓπt) dt,

because, for all k, ℓ ∈ {1, 2, . . . }, Proposition 3 implies∫ 1

0

sin(2kπt) · cos(2ℓπt) dt = 0.

The proof of our claim follows from Proposition 3 because
∫ 1

0
sin(2kπt)·sin(2ℓπt) dt =

1/2 if (and only if) k = ℓ ; otherwise, it is 0. ⊓⊔

Next, we simplify the expression for I
(δ)
k,ℓ .

I
(δ)
k,ℓ =

∫ 1

0

φ(kt) · φ(ℓ(t− δ)) dt

=
16

π2

∑
odd n>0

∑
odd m>0

1

mn

∫ 1

0

sin(2nπ · kt) sin(2mπ · ℓ(t− δ)) dt

(By Equation 11)

In light of the claim above, the integral in the RHS survives if and only if
nk = mℓ. Since, gcd(k, ℓ) = 1, note that nk = mℓ if and only if

(n,m) ∈ J :=

{
(ℓ, k), (3ℓ, 3k), (5ℓ, 5k), . . .

}
.
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With this observation and Proposition 3, we get

I
(δ)
k,ℓ =

16

π2

∑
(n,m)∈J

cos(2ℓπδ)

mn

∫ 1

0

sin(2nπ · kt) sin(2mπ · ℓt) dt

=
16

π2

∑
odd a>0

cos(2ℓπδ)

kℓ · a2

∫ 1

0

sin(2kℓaπ · t) sin(2kℓaπ · t) dt

=
16

π2
· 1
kℓ

∑
odd a>0

1

a2
· cos(2ℓπδ)

2
(By Proposition 3)

=
cos(2ℓπδ)

kℓ
·
�
��8

π2
·
�
��π
2

8
=

cos(2ℓπδ)

kℓ
(Because

∑
odd a>0

1
a2 = 3

4 · ζ(2) =
π2

8 )

Combining Claim 8 and Claim 9, we showed that for relatively prime k, ℓ ∈
Fp,

I
(δ)
k,ℓ =

{
0 if k · ℓ is even
cos(2ℓπ·δ)

kℓ if k · ℓ is odd
.

Claim 7 generalizes the result to all k, ℓ ∈ Fp by considering g = gcd(k, ℓ).
This proves our lemma Lemma 5 that

I
(δ)
k,ℓ =

{
0 if k · ℓ is even
g2

kℓ · cos(2ℓπ · δ) if k · ℓ is odd
.

⊓⊔

C.5 Proof of Lemma 1

Consider evaluation places (u, v) ∈ [α1 : α2] and secret s ∈ Fp.

Define ∆ :=
(
s · 2−1

)
·
(
u−1 − v−1

)
∈ Fp.

Lemma 2 shows that

SD

(
LSB(Share(0)) , LSB(Share(s))

)
=

∣∣∣Σ(0)
u,v −Σ(∆)

u,v

∣∣∣
2p

(13)

Lemma 3 proves

Σ(∆)
u,v = Σ̃(∆)

u,v +

 ∑
T∈{0,∆}

signp(uT ) · signp(v(T −∆))

 . (14)
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Apply Lemma 3 to Equation 13,

SD

(
LSB(Share(0)) , LSB(Share(s))

)
=

∣∣∣Σ̃(0)
u,v − Σ̃(∆)

u,v −
(∑

T∈{0,∆}\{0} signp(uT ) · signp(v(T −∆))
)∣∣∣

2p

=

∣∣∣Σ̃(0)
u,v − Σ̃(∆)

u,v − signp(u∆)
∣∣∣

2p

=

∣∣∣Σ̃(0)
u,v − Σ̃(∆)

u,v

∣∣∣
2p

± 1

2p
(15)

Define δ =
signp(∆)·|∆|p

p ∈ Q.
Lemma 4 states that

1

p
· Σ̃(∆)

u,v = signp(u) · signp(v) · I
(δ)
|u|p,|v|p

±
4(|u|p + |v|p)− 2

p
(16)

.

Apply Lemma 4 to Equation 15,

SD

(
LSB(Share(0)) , LSB(Share(s))

)
=

∣∣∣I(0)|u|p,|v|p
− I(δ)|u|p,|v|p

∣∣∣
2

±
4(|u|p + |v|p)− 2

p
± 1

2p
.

(17)

Lemma 5 proves that for g = gcd(|u|p, |v|p),

I
(δ)
|u|p,|v|p

=

{
0, if |u|p · |v|p/g2 is even

g2

|u|p·|v|p
· cos(2|v|pπ · δ), if |u|p · |v|p/g2 is odd.

,

Finally, apply Lemma 5 to Equation 17.

SD

(
LSB(Share(0)) , LSB(Share(s))

)
=±

4(|u|p+|v|p)−(3/2)

p , if |u|p · |v|p/g2 is even

(1− cos(2|v|pπ · δ)) ·
g2

2·|u|p·|v|p
± 4(|u|p+|v|p)−(3/2)

p , if |u|p · |v|p/g2 is odd,

Replace (1− cos(2|v|pπ · δ)) with 2 sin2(|v|pπ · δ) concludes our proof.

C.6 Proof of Theorem 1

Consider the ShamirSS(2, 2, (α1, α2)) secret-sharing scheme over a prime field
Fp. For (u, v) ∈ [α1, α2], g = gcd(|u|p, |v|p), ∆ = (s · 2−1) · (u−1 − v−1) ∈ F ∗

p and
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δ =
signp(∆)·|∆|p

p ∈ Q,

SD

(
LSB(Share(0)) , LSB(Share(s))

)
=±

4(|u|p+|v|p)−(3/2)

p , if |u|p · |v|p/g2 is even

(1− cos(2|v|pπ · δ)) ·
g2

2·|u|p·|v|p
± 4(|u|p+|v|p)−(3/2)

p , if |u|p · |v|p/g2 is odd.

If |u|p · |v|p/g2 is even, then

max
s∈F

SD

(
LSB(Share(0)) , LSB(Share(s))

)
= ±

4(|u|p + |v|p)− (3/2)

p
.

If |u|p · |v|p/g2 is odd, then maxs∈F SD
(
LSB(Share(0)) , LSB(Share(s))

)
is

achieved when cos(2|v|pπ · δ) is closest to −1.

Claim 10 For prime p ⩾ 3 and v,∆ ∈ Fp,

cos

(
2π ·

signp(∆)|∆|p|v|p
p

)
= cos

(
2π · (∆ · v) mod p

p

)
.

By Claim 10, cos(2|v|pπ · δ) = cos
(
2π · (∆·v) mod p

p

)
.

For∆ = (s·2−1)·(u−1−v−1) ∈ F ∗
p and v ∈ Fp,∆·v = (s·2−1)·(u−1v−1) ∈ Fp.

mins∈F∗
p
cos(2|v|pπ · δ) is achieved when ∆ · v = (s · 2−1) · (u−1v − 1) =

(p − 1)/2 ∈ Fp or ∆ · v = (s · 2−1) · (u−1v − 1) = (p + 1)/2 ∈ Fp which is
equivalent as s = ±(u−1v − 1)−1 ∈ F ∗

p .
When ∆ · v = (p− 1)/2 ∈ Fp,

cos(2|v|pπ · δ) = cos

(
2π

(p− 1)/2

p

)
= − cos(π/p).

Similarly, when ∆ · v = (p+ 1)/2 ∈ Fp,

cos(2|v|pπ · δ) = cos

(
2π

(p+ 1)/2

p

)
= − cos(π/p).

Therefore, if |u|p · |v|p/g2 is odd, then

max
s∈F

SD

(
LSB(Share(0)) , LSB(Share(s))

)
=

(
1 + cos(π/p)

2

)
· g2

|u|p · |v|p
±
4(|u|p + |v|p)− (3/2)

p

and the maximum is achieved when s = ±(u−1v − 1)−1 ∈ F ∗
p .

Efficient distinguished construction. Consider the following security game
(illustrated in the figure below). The attacker picks a secret s ∈ F ∗

p and sends
it to the challenger. The challenger picks a random bit b ∈ {0, 1}. If b = 0,

the challenger samples (ℓ1, ℓ2) from distribution D0 := ⃗LSB(Share(0)) and sends
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it to the attacker. Otherwise, the challenger samples (ℓ1, ℓ2) from distribution

D1 := ⃗LSB(Share(s)) and sends it to the attacker. The attacker aims to guess
which distribution (ℓ1, ℓ2) is sampled from. It uses the maximum likelihood de-
coder and then returns its guess b̃ to the challenger. The attacker wins the
security game if b = b̃.

Attacker Challenger

s∗ ∈ F ∗
p D0 = ⃗LSB(Share(0))

D1 = ⃗LSB(Share(s∗))

b←$ {0, 1}

b̃ = ML(ℓ1, ℓ2) (ℓ1, ℓ2) (ℓ1, ℓ2)←$Db

b̃ b == b̃

The maximum likelihood distinguisher outputs b̃ = 0 if Pr[(ℓ1, ℓ2)|s = 0] ⩾
Pr[(ℓ1, ℓ2)|s = s∗] and b̃ = 1 if Pr[(ℓ1, ℓ2)|s = 0] < Pr[(ℓ1, ℓ2)|s = s∗]. The output
depends on sign (Pr[(ℓ1, ℓ2)|s = 0]− Pr[(ℓ1, ℓ2)|s = s∗]).

For evaluation places (u, v), where |u|p · |v|p/g2 is odd and g = gcd(|u|p, |v|p),
and ∆ = (s∗ · 2−1) · (u−1 − v−1) ∈ F ∗, we get

Pr[(ℓ1, ℓ2)|s = 0]− Pr[(ℓ1, ℓ2)|s = s∗]

= (−1)ℓ1+ℓ2 · Σ
(0)
u,v −Σ(∆)

u,v

4p
(Supporting Material C.1)

= (−1)ℓ1+ℓ2 ·
Σ̃

(0)
u,v − Σ̃(∆)

u,v − signp(u∆)

4p
(Lemma 3)

= (−1)ℓ1+ℓ2 · Σ̃
(0)
u,v − Σ̃(∆)

u,v

4p
± 1

4p

=
(−1)ℓ1+ℓ2 · signp(u) · signp(v)

4
·
(
I
(0)
|u|p,|v|p

− I(δ)|u|p,|v|p
± 2 ·

4(|u|p + |v|p)− (3/2)

p

)
(Lemma 4, δ =

signp(∆)|∆|p
p )

=
(−1)ℓ1+ℓ2 · signp(u) · signp(v)

4
·

(
sin2(|v|pπ · δ) ·

g2

|u|p · |v|p
± 2 ·

4(|u|p + |v|p)− (3/2)

p

)
(Lemma 5)

Consider attacker picks s = ±(u−1 · v − 1)−1 ∈ F ∗ such that

Pr[(ℓ1, ℓ2)|s = 0]− Pr[(ℓ1, ℓ2)|s = s∗]

=
(−1)ℓ1+ℓ2 · signp(u) · signp(v)

4
·

(
cos2 (π/2p) · g2

|u|p · |v|p
± 2 ·

4(|u|p + |v|p)− (3/2)

p

)
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Since SD
(
LSB(Share(0)) , LSB(Share(s))

)
>

4(|u|p+|v|p)−(3/2)

p by our assump-
tion, then

cos2 (π/2p) · g2

|u|p · |v|p
− 2 ·

4(|u|p + |v|p)− (3/2)

p
> 0.

Hence,

sign (Pr[(ℓ1, ℓ2)|s = 0]− Pr[(ℓ1, ℓ2)|s = s∗]) = (−1)ℓ1+ℓ2 · signp(u) · signp(v).

There exists an efficient maximum likelihood distinguisher computing (−1)ℓ1+ℓ2 ·
signp(u) · signp(v). If (−1)ℓ1+ℓ2 · signp(u) · signp(v) > 0, then the maximum like-

lihood distinguisher outputs b̃ = 0. Otherwise, it outputs b̃ = 1.

C.7 Proof of inequality in Corollary 2

Our objective is to prove the following inequality for primes p ⩾ 11.

1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2

p− 2
⩽

ln p

4
√
p
+

5/2
√
p
.

We simplify this inequality into a simpler equivalent inequality.

1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2

p− 2
⩽

ln p

4
√
p
+

5/2
√
p

⇐⇒������1

4
· √p · ln p+

�
�
�3

2
· √p+ 1

2
⩽������1

4
· √p · ln p+

�
�
��
1

5

2
· √p− 1

2
· ln p√

p
− 5
√
p

⇐⇒ 1

2

√
p+

1

2
ln p ⩽

√
p ⩽ p− 5.

Thus, it suffices to prove the final inequality. Toward this objective, observe that

1. ln p ⩽
√
p, for p ⩾ 2, and

2.
√
p ⩽ p− 5, for p ⩾ 11.

Then, for p ⩾ 11,
1

2

√
p+

1

2
ln p ⩽

√
p ⩽ p− 5.

Therefore,
1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2

p− 2
⩽

ln p

4
√
p
+

5/2
√
p

for all p ⩾ 11.
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C.8 Additional Proof for Corollary 3

Claim 11 For ShamirSS(2, 2, α⃗ = (α1, α2)) and secret s ∈ F , define err := 85/4√
p +

13/2
p . Consider |α1|p, |α2|p < ⌈81/4√p⌉ and |α1|p · |α2|p/g2 is odd with g =

gcd(|α1|p, |α2|p). When εLSB(α⃗) > 2 · err,

sign
(
ε
(OUR)
LSB (α⃗)

)
= sign

(
Σ

(0)
α1,α2 −Σ

(∆)
α1,α2

p

)
where ∆ := (s · 2−1) · (α−1

1 − α
−1
2 ) ∈ F .

Proof.

Σ
(0)
α1,α2 −Σ

(∆)
α1,α2

p
=
Σ̃

(0)
α1,α2 − Σ̃

(∆)
α1,α2 − signp(α1∆)

p
(Lemma 3)

= signp(α1) · signp(α2) ·
(
I
(0)
|α1|p,|α2|p

− I(δ)|α1|p,|α2|p

)
± 2 ·

4(|α1|p + |α2|p)− (3/2)

p

(Lemma 4, δ =
signp(∆)|∆|p

p )

Equivalently,

Σ
(0)
α1,α2 −Σ

(∆)
α1,α2

p
±2·

4(|α1|p + |α2|p)− (3/2)

p
= signp(α1)·signp(α2)·

(
I
(0)
|α1|p,|α2|p

− I(δ)|α1|p,|α2|p

)
.

For |α1|p, |α2|p < ⌈81/4
√
p⌉,

2 ·
4(|α1|p + |α2|p)− (3/2)

p
⩽ 2 · err < εLSB(α⃗) =

∣∣∣Σ(0)
α1,α2 −Σ

(∆)
α1,α2

∣∣∣
p

.

which implies that±2· 4(|α1|p+|α2|p)−(3/2)

p does not change the sign of
Σ(0)

α1,α2
−Σ(∆)

α1,α2

p ,

sign

(
Σ

(0)
α1,α2 −Σ

(∆)
α1,α2

p
± 2 ·

4(|α1|p + |α2|p)− (3/2)

p

)
= sign

(
Σ

(0)
α1,α2 −Σ

(∆)
α1,α2

p

)
Hence,

sign

(
Σ

(0)
α1,α2 −Σ

(∆)
α1,α2

p

)
=sign

(
signp(α1) · signp(α2) ·

(
I
(0)
|α1|p,|α2|p

− I(δ)|α1|p,|α2|p

))
=sign

(
signp(α1) · signp(α2) ·

(
sin2(|v|pπ · δ) ·

g2

|u|p · |v|p

))
(Lemma 5)

= sign
(
signp(α1) · signp(α2)

)
(sin2(|v|pπ · δ) ·

g2

|u|p·|v|p
> 0)

= sign
(
ε
(OUR)
LSB (α⃗)

)
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.

⊓⊔

For any secret s ∈ F , let us first define the distinguishing advantage of the
maximum likelihood decoder as

εLSB(α⃗; s) :=
Σ

(0)
α1,α2 −Σ

(∆)
α1,α2

p

where ∆ := (s · 2−1) · (α−1
1 − α−1

2 ) ∈ F and the estimate ε
(OUR)
LSB (α⃗; s) ∈ [0, 1]

satisfying

ε
(OUR)
LSB (α⃗; s) = εLSB(α⃗; s) ± err

where err := 85/4√
p + 13/2

p . Given Claim 11, we know that for any secret s ∈ F ,

εLSB(α⃗; s) ⩾ ε
(OUR)
LSB (α⃗; s)− err. (18)

and

ε
(OUR)
LSB (α⃗; s) ⩾ εLSB(α⃗; s)− err. (19)

Consider secret s∗ ∈ F that achieves the maximum ε
(OUR)
LSB (α⃗; s), we define

ε
(OUR)
LSB (α⃗; s∗) as follows

ε
(OUR)
LSB (α⃗) := max

s∈F
ε
(OUR)
LSB (α⃗; s) = ε

(OUR)
LSB (α⃗; s∗).

Similarly, consider s̃∗ ∈ F that reaches maximum εLSB(α⃗; s), we define εLSB(α⃗; s
∗)

as

εLSB(α⃗) := max
s∈F

εLSB(α⃗; s) = εLSB(α⃗; s̃
∗).

εLSB(α⃗; s
∗) ⩾ε(OUR)

LSB (α⃗; s∗)− err = ε
(OUR)
LSB (α⃗)− err (Equation 18)

⩾ε(OUR)
LSB (α⃗; s̃∗)− err (ε

(OUR)
LSB (α⃗; s∗) = maxs∈F ε

(OUR)
LSB (α⃗; s))

⩾εLSB(α⃗; s̃
∗)− 2 · err (Equation 19)

=εLSB(α⃗)− 2 · err > 0

Therefore, the distinguishing advantage of the maximum likelihood decoder
is

⩾ ε
(OUR)
LSB (α⃗)− err ⩾ εLSB(α⃗)− 2 · err.
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C.9 Proof of Lemma 7

2SD
(
⃗LSBi,j(Share(0)) , ⃗LSBi,j(Share(s))

)
=

∑
ℓ⃗∈{0,1}2

∣∣∣Pr [ ⃗LSBi,j(Share(0)) = ℓ⃗
]
− Pr

[
⃗LSBi,j(Share(s)) = ℓ⃗

]∣∣∣
=

∑
ℓ⃗∈{0,1}2

∣∣∣∣Ex [1LSB−1
i (ℓ1)

(α1x) · 1LSB−1
j (ℓ2)

(α2x)
]

− E
x

[
1LSB−1

i (ℓ1)
(α1x+ s) · 1LSB−1

j (ℓ2)
(α2x+ s)

]∣∣∣∣
=

∑
ℓ⃗∈{0,1}2

∣∣∣∣Ex [1LSB−1
i (0)(α1x) · 1LSB−1

j (0)(α2x)
]

− E
x

[
1LSB−1

i (0)(α1x+ s) · 1LSB−1
j (0)(α2x+ s)

]∣∣∣∣
(Using the fact that 1LSB−1

k (1) = 1− 1LSB−1
k (0))

= 4 ·
∣∣∣∣Ex [1Ei

(α1x) · 1Ej
(α2x)

]
−E

x

[
1Ei

(α1x+ s) · 1Ej
(α2x+ s)

]∣∣∣∣
= 4 ·

∣∣∣∣Ex [1E·(2i)(α1x) · 1E·(2j)(α2x)
]
−E

x

[
1E·(2i)(α1x+ s) · 1E·(2j)(α2x+ s)

]∣∣∣∣
(By Proposition 2)

= 4 ·
∣∣∣∣Ex [1E(2−iα1x) · 1E(2−jα2x)

]
− E

x

[
1E(2

−iα1x+ 2−is) · 1E(2−jα2x+ 2−js)
]∣∣∣∣ (20)

At this point, we introduce the following variable renaming.

Claim 12 The quantity

E
x

[
1E(2

−iα1x+ 2−is) · 1E(2−jα2x+ 2−js)
]

is identical to

E
y

[
1E(2

−iα1y + s′) · 1E(2−jα2y + s′)
]
,

where

y := x+
2−i − 2−j

2−iα1 − 2−jα2
, and s′ :=

2−i2−j(α1 − α2)

2−iα1 − 2−jα2
· s

The proof of this claim is by direct substitution. Note that s 7→ s′ is an automor-
phism over F ∗. We continue the derivation from the expression in Equation 23
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as follows.

= 4 ·
∣∣∣∣Ex [1E(2−iα1x) · 1E(2−jα2x)

]
− E

y

[
1E(2

−iα1y + s′) · 1E(2−jα2y + s′)
]∣∣∣∣

= εLSB(2
−iα1, 2

−jα2).

Therefore, we conclude that the insecurity of ShamirSS(2, 2, (α1, α2)) secret-

sharing scheme against the ⃗LSBi,j is identical to the insecurity of the ShamirSS(2, 2, (2−iα1, 2
−jα2))

secret-sharing scheme against the LSB attack.

C.10 Proof of maximum insecurity bound in Corollary 7

Observe that λ− ⌊λ/2⌋ = ⌈λ/2⌉ ⩾ ⌊λ/2⌋. Therefore, for 1 ⩽ i ⩽ λ− 1, we have

εLSB(2
i · α1, α2) ⩽

4 · 2t + 4 · (2λ−t − 1)− 2

p
.

All that remains is to prove that this upper bound also holds for εLSB(2
0 ·α1, α2).

For λ = 2, we have t = 1. In this case, one can verify that the upper bound
holds.

ε(20 · α1, α2) ⩽
4 · 2t + 4 · (2λ−t − 1)− 2

p
.

For λ ⩾ 3, note that if p is a Mersenne prime, then λ must be odd. Therefore,
we have λ− t = t+ 1 and p = 22t+1 − 1. Therefore, we need to prove that

ε(20 · α1, α2) =
1

2t − 1
+

4 + 4 · (2t − 1)− 2

p
⩽

4 · 2t + 4 · (2t+1 − 1)− 2

p
.

This bound is equivalent to proving

1

2t − 1
⩽

4 · (2t+1 − 1)

22t+1 − 1

⇐⇒ 1

T − 1
⩽

4 · (2T − 1)

2T 2 − 1
(substitute T = 2t)

⇐⇒ 0 ⩽ 6T 2 − 12T + 5

⇐⇒ 1/6 ⩽ (T − 1)2,

which is true for all t ⩾ 1.

So, the overall maximum is

4 · 2⌊λ/2⌋ + 4 · (2⌈λ/2⌉ − 1)− 2

p
=

4 · (2⌊λ/2⌋ + 2⌈λ/2⌉)− 6

p
.
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D Proof of Theorem 2

D.1 Fourier Basics

Fourier Basics We use Fourier analysis on prime field F of order p. Define
ω := exp(2πı/p). For any functions f, g : F → C, we define the inner product as

⟨f, g⟩ := 1

p

∑
x∈F

f(x) · g(x),

where z is the complex conjugate of z ∈ C. For z ∈ C, |z| :=
√
zz. For any α ∈ F ,

define the function f̂ : F → C as follows.

f̂(α) :=
1

p

∑
x∈F

f(x) · ω−αx.

The Fourier transform maps the function f to the function f̂ .

Lemma 11 (Fourier Inversion Formula). f(x) =
∑

α∈F f̂(α) · ωαx.

The following propositions will be useful, which follow directly from the defini-
tion.

Proposition 4. Let S, T ⊆ F be a partition of F . For all α ∈ F ,

1̂S(α) = −1̂T (α).

Proposition 5 (Properties of Fourier Coefficients). For all S ⊆ F and
x, α ∈ F , it holds that

1̂x+S(α) = 1̂S(α) · ω−α·x,

1̂S(x · α) = 1̂S·x(α).

D.2 Some Preparatory Results

The following result rewrites the statistical distance between two leakage distri-
butions using the Fourier coefficients of appropriate indicator functions.

Proposition 6. Consider ShamirSS(n, n) over a prime field F . Let C⊥
0 be the

dual code of Share(0). For any one-bit leakage function, τ⃗ : Fn → {0, 1}n, the
following identity holds for any secret s ∈ F .

2SD (τ⃗(Share(0)) , τ⃗(Share(s)))

= 2n

∣∣∣∣∣∣
∑

γ⃗∈C⊥
0 \0⃗

(
n∏

i=1

1̂τ−1
i (0)(γi)

)
·
(
1− ωs·(γ1+···+γn)

)∣∣∣∣∣∣.
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Proof. The following identity is known in the literature (see [33] for proof).

2SD (τ⃗(Share(0)) , τ⃗(Share(s)))

=
∑

ℓ⃗∈{0,1}n

∣∣∣∣∣∣
∑
γ⃗∈C⊥

0

(
n∏

i=1

1̂τ−1
i (ℓi)

(γi)

)
·
(
1− ωs·(γ1+···+γn)

)∣∣∣∣∣∣
By Proposition 4, 1̂τ−1

i (ℓi)
(γi) = ̂1τ−1

i (1−ℓi)
(γi) since τ

−1
i (ℓi) and τ

−1
i (1− ℓi) are

a partition of F . Using this property, one can verify for every ℓ⃗, ℓ⃗′ ∈ {0, 1}n, it
holds that ∣∣∣∣∣∣

∑
γ⃗∈C⊥

0

(
n∏

i=1

1̂τ−1
i (ℓi)

(γi)

)
·
(
1− ωs·(γ1+···+γn)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
γ⃗∈C⊥

0

(
n∏

i=1

1̂τ−1
i (ℓ′i)

(γi)

)
·
(
1− ωs·(γ1+···+γn)

)∣∣∣∣∣∣.
Therefore, we have

2SD (τ⃗(Share(0)) , τ⃗(Share(s)))

= 2n

∣∣∣∣∣∣
∑

γ⃗∈C⊥
0 \0⃗

(
n∏

i=1

1̂τ−1
i (0)(γi)

)
·
(
1− ωs·(γ1+···+γn)

)∣∣∣∣∣∣,
as desired. ⊓⊔

Proposition 7. Let A1, A2, . . . , An ⊆ F and β1, β2, . . . , βn ∈ F ∗. Then, for any
s ∈ F , the following identity holds.

∑
t∈F

n∏
i=1

(
1̂Ai·βi

(t) · ωs·t·βi

)
=

1

pn−1

∑
xn∈An·βn

...
x3∈A3·β3

card(A2)− card

((
A2 · β2 +

n∑
i=3

xi − s ·
n∑

i=1

βi

)⋂
A1 · β1

)

Proof. We shall extensively use the linear property of Fourier coefficients.
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∑
t∈F

n∏
i=1

(
1̂Ai·βi(t) · ωs·t·βi

)
=
∑
t∈F

n∏
i

(
1

p

∑
xi∈F

1Ai·βi
(xi) · ω−t·xi · ωs·t·βi

)
(Fourier expansion)

=
1

pn

∑
t∈F

∑
x⃗∈Fn

(
n∏

i=1

1Ai·βi(xi) · ω−t·xi · ωs·t·βi

)
(Linearity)

=
1

pn

∑
x⃗∈Fn

(
n∏

i=1

1Ai·βi(xi)

)∑
t∈F

ω−t·(x1+···+xn−s·(β1+···+βn)) (Linearity)

=
1

pn−1

∑
x⃗∈Fn :

x1+···+xn=s·(β1+···+βn)

(
n∏

i=1

1Ai·βi(xi)

)
(Sum of roots of unity)

Now, replacing x1 = s · (β1 +· · ·+ βn)− (x2 +· · ·+ xn) yields

1

pn−1

∑
x2,...,xn∈F

1A1·β1(s · (β1 +· · ·+ βn)− (x2 +· · ·+ xn)) ·
n∏

i=2

1Ai·βi(xi)

=
1

pn−1

∑
xn∈An·βn

...
x3∈A3·β3

∑
x2∈F

1A2·β2(x2) · 1A1·β1(s · (β1 +· · ·+ βn)− (x2 +· · ·+ xn))

Let us take a detour and simplify the inner summand using linear properties of
sets and indicator functions as follows.∑
x2∈F

1A2·β2
(x2) · 1A1·β1

(s · (β1 +· · ·+ βn)− (x2 +· · ·+ xn))

=
∑
x2∈F

1A2·β2
(x2) · 1A1·β1−s·(β1+···+βn)+(x3+···+xn)(−x2)

=
∑
x2∈F

1A2·β2(x2) · 1−A1·β1+s·(β1+···+βn)−(x3+...+xn)(x2)

= card(A2 · β2 ∩ (−A1 · β1 − (x3 + . . .+ xn) + s · (β1 +· · ·+ βn)))

= card(A2 · β2 + (x3 +· · ·+ xn)− s · (β1 +· · ·+ βn) ∩ (−A1 · β1))
= card(A2 · β2)− card(A2 · β2 + (x3 +· · ·+ xn)− s · (β1 +· · ·+ βn) ∩A1 · β1)
= card(A2)− card(A2 · β2 + (x3 +· · ·+ xn)− s · (β1 +· · ·+ βn) ∩A1 · β1) ,

which completes the proof. ⊓⊔
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D.3 Putting things together and proving Theorem 2

We begin with some notations. Let τ⃗ : Fn → {0, 1}n be any one-bit physical
leakage. Let Ai = τ−1

i (0) for 1 ⩽ i ⩽ n. By Imported Theorem 1, the dual code
C⊥

0 is the set {t · (β1, β2, . . . , βn) : t ∈ F}, where

βi =

αi

∏
j ̸=i

(αi − αj)

−1

, for every i ∈ {1, 2, . . . , n}.

Consider the following manipulation.

2SD (τ⃗(Share(0)) , τ⃗(Share(s)))

= 2n ·

∣∣∣∣∣∣
∑

γ⃗∈C⊥
0 \0⃗

n∏
i=1

1̂τ−1
i (0)(γi) ·

(
1− ωs·(γ1+···+γn)

)∣∣∣∣∣∣ (Proposition 6)

= 2n ·

∣∣∣∣∣∑
t∈F∗

n∏
i=1

1̂Ai(t · βi) ·
(
1− ωs·t·(β1+···+βn)

)∣∣∣∣∣
= 2n ·

∣∣∣∣∣∑
t∈F∗

n∏
i=1

1̂Ai·βi(t)−
∑
t∈F∗

n∏
i=1

1̂Ai·βi(t) · ωs·t·βi

∣∣∣∣∣
For each s ∈ F and tuple (x3, x4, . . . , xn) satisfying xi ∈ Ai · βi for 3 ⩽ i ⩽ n,
we define

φs,τ⃗ (x3, x4, . . . , xn) :=∑
xn∈An·βn

· · ·
∑

x3∈A3·β3

card

((
A2 · β2 +

n∑
i=3

xi − s ·
n∑

i=1

βi

)⋂
A1 · β1

)
.

Then, it follows from Proposition 7 that

2SD (τ⃗(Share(0)) , τ⃗(Share(s))) =
2n−1

pn−1
·
∣∣∣∣φ0,τ⃗ (x3, . . . , xn)− φs,τ⃗ (x3, . . . , xn)

∣∣∣∣.
It suffices to prove the result when τ⃗ = ⃗LSB (the proof for arbitrary physical bit
leakage is similar). In this case, note that A1 = A2 = E = F+ · 2. Therefore, we
have

card

((
A2 · β2 +

n∑
i=3

xi − s ·
n∑

i=1

βi

)⋂
A1 · β1

)

= card

((
F+ · 2 · β2 +

n∑
i=3

xi − s ·
n∑

i=1

βi

)⋂
F+ · 2 · β1

)

= card

((
F+ · β2 + 2−1 ·

(
n∑

i=3

xi − s ·
n∑

i=1

βi

))⋂
F+ · β1

)

= Σ
(∆(s)

x3,...,xn)
β−1
1 ,β−1

2

,
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where ∆
(s)
x3,...,xn

:= 2−1 ·(
∑n

i=3 xi − s ·
∑n

i=1 βi). Similar to the proof of Lemma 2
in Supporting Material C.1, we have

2SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
=

2n−2

pn−1
·

∣∣∣∣∣∣
∑

xn∈E·βn

· · ·
∑

x3∈E·β3

(
Σ
(∆(0)

x3,...,xn)
β−1
1 ,β−1

2

−Σ(∆(s)
x3,...,xn)

β−1
1 ,β−1

2

)∣∣∣∣∣∣
⩽

2n−2

pn−1
·
∑

xn∈E·βn

· · ·
∑

x3∈E·β3

∣∣∣∣(Σ(∆(0)
x3,...,xn)

β−1
1 ,β−1

2

−Σ(∆(s)
x3,...,xn)

β−1
1 ,β−1

2

)∣∣∣∣
(By triangle inequality)

Suppose ShamirSS(2, 2, (β1, β2)) have ε insecurity against LSB. Then, it follows
from Lemma 2 that

∣∣∣∣Σ(∆(0)
x3,...,xn)

β−1
1 ,β−1

2

−Σ(∆(s)
x3,...,xn)

β−1
1 ,β−1

2

∣∣∣∣ ⩽ 2εp. (21)

Applying the above equation for every term under the summand yields.

2SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
⩽

2n−2

pn−1
·
∑

xn∈E·βn

· · ·
∑

x3∈E·β3

2εp

⩽
2n−2

pn−1
· (p/2)· · · (p/2)︸ ︷︷ ︸

(n−2)-times

·2εp

= 2ε,

which completes the proof.

E Proof of Lemma 9

Consider the ShamirSS(3, 2, (α1, α2, α3)) secret-sharing scheme over a prime field
Fp. Let s ∈ F be an arbitrary secret. Let us begin by proving the insecurity of
ShamirSS(3, 2, (α1, α2, α3)) against LSB leakage attack and then generalize to
arbitrary physical bit leakage attack.
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E.1 Against LSB Leakage

2SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
=

∑
ℓ⃗∈{0,1}3

∣∣∣Pr [ ⃗LSB(Share(0)) = ℓ⃗
]
− Pr

[
⃗LSB(Share(s)) = ℓ⃗

]∣∣∣
=

∑
ℓ⃗∈{0,1}3

∣∣∣∣E
X

[
1LSB−1(ℓ1)(α1X) · 1LSB−1(ℓ2)(α2X) · 1LSB−1(ℓ3)(α3X)

]
− E

X

[
1LSB−1(ℓ1)(α1X + s) · 1LSB−1(ℓ2)(α2X + s) · 1LSB−1(ℓ3)(α3X + s)

]∣∣∣∣
=

∑
ℓ⃗∈{0,1}3

∣∣∣∣∣EX
[

3∏
i=1

(
1 + (−1)ℓi signp(αiX · 2−1)

)
2

]
−E

X

[
3∏

i=1

(
1 + (−1)ℓi signp((αiX + s) · 2−1)

)
2

]∣∣∣∣∣
(Claim 1)

=
∑

ℓ⃗∈{0,1}3

∣∣∣∣∣EY
[

3∏
i=1

(
1 + (−1)ℓi signp(αiY )

)
2

]
−E

Y

[
3∏

i=1

(
1 + (−1)ℓi signp(αiY + t)

)
2

]∣∣∣∣∣
(X · 2−1 7→ Y, t = s · 2−1)

=
1

8
· 1
p

∑
ℓ⃗∈{0,1}3

∣∣∣∣∣∣
∑
Y ∈Fp

3∏
i=1

(
1 + (−1)ℓi · signp(αiY )

)
−
∑
Y ∈F

3∏
i=1

(
1 + (−1)ℓi · signp(αiY + t)

)∣∣∣∣∣∣

Observe that

3∏
i=1

(
1 + (−1)ℓi · signp(αiY + t)

)
= 1 +

(
3∑

i=1

(−1)ℓi · signp(αiY + t)

)

+

∑
i<j

(−1)ℓi+ℓj · signp(αiY + t) signp(αjY + t)


+ (−1)ℓ1+ℓ2+ℓ3 · signp(α1Y + t) signp(α2Y + t) signp(α3Y + t)

Since for αi, t, Y ∈ Fp, αi · Y + t is an automorphism on F , then for all
αi, t ∈ F ∑

Y ∈Fp

signp(αiY + t) = 1.
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Hence,

2SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
=

1

8p
·
∑

ℓ⃗∈{0,1}3

∣∣∣∣∣∣
 ∑

1⩽i<j⩽3

(−1)ℓi+ℓj ·
∑
Y ∈Fp

signp(αiY ) signp(αjY )


−

 ∑
1⩽i<j⩽3

(−1)ℓi+ℓj ·
∑
Y ∈Fp

signp(αiY + t) signp(αjY + t)


+ (−1)ℓ1+ℓ2+ℓ3

∑
Y ∈Fp

signp(α1Y ) signp(α2Y ) signp(α3Y )

−(−1)ℓ1+ℓ2+ℓ3
∑
Y ∈Fp

signp(α1Y + t) signp(α2Y + t) signp(α3Y + t)

∣∣∣∣∣∣
=

1

8p
·
∑

ℓ⃗∈{0,1}3

∣∣∣∣∣∣
∑

1⩽i<j⩽3

(−1)ℓi+ℓj ·

∑
Y ∈Fp

signp(αiY ) signp(αjY )−
∑
Y ∈Fp

signp(αiY + t) signp(αjY + t)


+ (−1)ℓ1+ℓ2+ℓ3 ·

∑
Y ∈Fp

signp(α1Y ) signp(α2Y ) signp(α3Y )

−(−1)ℓ1+ℓ2+ℓ3 ·
∑
Y ∈Fp

signp(α1Y + t) signp(α2Y + t) signp(α3Y + t)

∣∣∣∣∣∣
=

1

8p
·
∑

ℓ⃗∈{0,1}3

∣∣∣∣∣∣
∑

1⩽i<j⩽3

(−1)ℓi+ℓj ·
(
Σ(0)

αi,αj
−Σ(∆i,j)

αi,αj

)
+ (−1)ℓ1+ℓ2+ℓ3 ·

(
Σ(0,0)

α1,α2,α3
−Σ(∆1,2,∆1,3)

α1,α2,α3

)∣∣∣∣∣∣
⩽
1

p
·
∑

1⩽i<j⩽3

∣∣∣∣Σ(0)
αi,αj

−Σ(∆i,j)
αi,αj

∣∣∣∣+ 1

p
·
∣∣∣∣Σ(0,0)

α1,α2,α3
−Σ(∆1,2,∆1,3)

α1,α2,α3

∣∣∣∣
(Triangle Inequiality)

where ∆i,j := (s · 2−1) · (α−1
i − α

−1
j ) for all 1 ⩽ i < j ⩽ 3.

Then,

SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
⩽

∑
1⩽i<j⩽3

∣∣∣Σ(0)
αi,αj −Σ

(∆i,j)
αi,αj

∣∣∣
2p

+

∣∣∣Σ(0,0)
α1,α2,α3 −Σ

(∆1,2,∆1,3)
α1,α2,α3

∣∣∣
2p

=
∑

1⩽i<j⩽3

εLSB(αi, αj) +

∣∣∣Σ(0,0)
α1,α2,α3 −Σ

(∆1,2,∆1,3)
α1,α2,α3

∣∣∣
2p

Consider the following generalization of Lemma 3.
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Claim 13 For k, ℓ,m ∈ {1, 2, . . . } and ∆,∆′ ∈ {0, 1, . . . , (p− 1)},

Σ
(∆,∆′)
k,ℓ,m = Σ̃

(∆,∆′)
k,ℓ,m +

 ∑
T∈{0,∆,∆′}

signp(kT ) · signp(ℓ(T −∆)) · signp(m(T −∆′))

 .

Proof.

Σ
(∆,∆′)
k,ℓ,m =

∑
X∈Fp

signp(k ·X) · signp(ℓ · (X −∆)) · signp(m · (X −∆′))

=
∑

X∈Fp

s̃ignp(k ·X) · s̃ignp(ℓ · (X −∆)) · s̃ignp(m · (X −∆′))

+
∑

X∈{0,∆,∆′}

signp(k ·X) · signp(ℓ · (X −∆)) · signp(m · (X −∆′))

=Σ̃
(∆,∆′)
k,ℓ,m +

 ∑
T∈{0,∆,∆′}

signp(kT ) · signp(ℓ(T −∆)) · signp(m(T −∆′))


⊓⊔

Claim 14 For k, ℓ,m ∈ {1, 2, . . . } and ∆,∆′ ∈ {0, 1, . . . , (p− 1)},

Σ̃
(∆,∆′)
k,ℓ,m = 0.

Proof.

Σ̃
(∆,∆′)
k,ℓ,m =

∑
X∈Fp

s̃ignp(k ·X) · s̃ignp(ℓ · (X −∆)) · s̃ignp(m · (X −∆′))

=
∑

X∈Fp

φ(k ·X/p) · φ(ℓ · (X −∆)/p) · φ(m · (X −∆′)/p)

(s̃ignp(X) = φ(X/p))

=
∑

x∈{ 0
p ,

1
p ,...,

p−1
p }

φ(k · x) · φ(ℓ · (x−∆/p)) · φ(m · (x−∆′/p))

Recall the Fourier expansion of φ(x) is as follows.

φ(x) =
∑

odd n>0

4

πn
· sin(2nπx). (22)

Substituting φ(x) in the expression for Σ̃
(∆,∆′)
k,ℓ,m with Equation 22,

Σ̃
(∆,∆′)
k,ℓ,m

=
∑

x∈{ 0
p ,

1
p ,...,

p−1
p }

∑
odd n1,n2,n3>0

43

π3n1n2n3
· sin(2n1πkx) · sin(2n2πℓ · (x−∆/p)) · sin(2n3πm · (x−∆′/p))
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Consider the following trignometric identity,

sinA·sinB·sinC =
sin(A−B + C)− sin(A−B − C)− sin(A+B + C) + sin(A+B − C)

4
.

Substituting A = 2n1πkx,B = 2n2πℓ · (x −∆/p), C = 2n3πm · (x −∆′/p),
we get

4 · sin(2n1πkx) · sin(2n2πℓ · (x−∆/p)) · sin(2n3πm · (x−∆′/p))

= sin(2πx · (n1k − n2ℓ+ n3m) + 2π · (n2ℓ∆− n3m∆′)/p)

− sin(2πx · (n1k − n2ℓ− n3m) + 2π · (n2ℓ∆+ n3m∆
′)/p)

− sin(2πx · (n1k + n2ℓ+ n3m) + 2π · (−n2ℓ∆− n3m∆′)/p)

+ sin(2πx · (n1k + n2ℓ− n3m) + 2π · (−n2ℓ∆+ n3m∆
′)/p)

Define a1 = n1k−n2ℓ+n3m, a2 = n1k−n2ℓ−n3m, a3 = n1k+n2ℓ+n3m, a4 =
n1k + n2ℓ − n3m where a1, a2, a3, a4 ∈ Z and define b1 = n2ℓ∆ − n3m∆′, b2 =
n2ℓ∆+n3m∆

′, b3 = n2ℓ∆+n3m∆
′, b4 = −n2ℓ∆+n3m∆

′ where b1, b2, b3, b4 ∈ Z
as well.

∑
x∈{ 0

p ,
1
p ,...,

p−1
p }

sin(2π · a1x+ 2π · b1/p)

=
∑

y∈{ 0
p ,

1
p ,...,

p−1
p }

sin(2π · (y + b1/p)) (a1 ∈ Z)

=
∑

y∈{ 0
p ,

1
p ,...,

p−1
p }

sin(2π · y) (b1/p ∈ 1/p · Z)

=0

Note that the last equality holds because for all i ∈ {1, 2, . . . , (p−1)/2}, we have

sin(2π · (p− i)/p) = − sin(2π · i/p).

Similarly, we can obtain that∑
x∈{ 0

p ,
1
p ,...,

p−1
p }

sin(2π · a2x+ 2π · b2/p) =0

∑
x∈{ 0

p ,
1
p ,...,

p−1
p }

sin(2π · a3x+ 2π · b3/p) =0

∑
x∈{ 0

p ,
1
p ,...,

p−1
p }

sin(2π · a4x+ 2π · b4/p) =0
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Combining all terms, we get∑
x∈{ 0

p ,
1
p ,...,

p−1
p }

sin(2n1πkx) · sin(2n2πℓ · (x−∆/p)) · sin(2n3πm · (x−∆′/p)) = 0

which implies that

Σ̃
(∆,∆′)
k,ℓ,m = 0.

⊓⊔

Apply Claim 14 to Claim 13, we get

Claim 15 For k, ℓ,m ∈ {1, 2, . . . } and ∆,∆′ ∈ {0, 1, . . . , (p− 1)},

Σ
(∆,∆′)
k,ℓ,m =

 ∑
T∈{0,∆,∆′}

signp(kT ) · signp(ℓ(T −∆)) · signp(m(T −∆′))

 .

Claim 15 implies that

Σ(0,0)
α1,α2,α3

−Σ(∆1,2,∆1,3)
α1,α2,α3

= −
∑

T∈{∆1,2,∆1,3}

signp(k · T ) · signp(ℓ · (T −∆1,2)) · signp(m · (T −∆1,3)).

Then, ∣∣∣∣Σ(0,0)
α1,α2,α3

−Σ(∆1,2,∆1,3)
α1,α2,α3

∣∣∣∣ ⩽ 2.

Therefore,

εLSB(α⃗) := SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
⩽

∑
1⩽i<j⩽3

εLSB(αi, αj) +
1

p
.

E.2 Against arbitrary physical bit leakage attack

Let LSBi : F → {0, 1} be defined as in Section 5. LSBi : F → {0, 1} is the
function that outputs the i-th least significant bit in the binary representation.

We begin by considering a generalization of Proposition 2.

Claim 16 For all i ∈ {0, 1, . . . , λ − 1}, we have LSBi(x) = LSB(x · 2−i) for
x ∈ F .
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2SD
(
⃗LSBi1,i2,i3(Share(0)) , ⃗LSBi1,i2,i3(Share(s))

)
=

∑
ℓ⃗∈{0,1}3

∣∣∣Pr [ ⃗LSBi1,i2,i3(Share(0)) = ℓ⃗
]
− Pr

[
⃗LSBi1,i2,i3(Share(s)) = ℓ⃗

]∣∣∣
=

∑
ℓ⃗∈{0,1}3

∣∣∣∣E
X

[
1LSB−1

i1
(ℓ1)

(α1X) · 1LSB−1
i2

(ℓ2)
(α2X) · 1LSB−1

i3
(ℓ3)

(α3X)
]

− E
x

[
1LSB−1

i1
(ℓ1)

(α1X + s) · 1LSB−1
i2

(ℓ2)
(α2X + s) · 1LSB−1

i3
(ℓ3)

(α3X + s)
]∣∣∣∣

=
∑

ℓ⃗∈{0,1}3

∣∣∣∣E
X

[
1LSB−1(ℓ1)(α1X · 2−i1) · 1LSB−1(ℓ2)(α2X · 2−i2) · 1LSB−1(ℓ3)(α3X · 2−i3)

]
− E

X

[
1LSB−1(ℓ1)((α1X + s) · 2−i1) · 1LSB−1(ℓ2)((α2X + s) · 2−i2) · 1LSB−1(ℓ3)((α3X + s) · 2−i3)

]∣∣∣∣
(By Claim 16)

=
∑

ℓ⃗∈{0,1}3

∣∣∣∣∣∣EX
 3∏
j=1

(
1 + (−1)ℓj signp(αjX · 2−ij )

)
2

−E
X

 3∏
j=1

(
1 + (−1)ℓj signp((αjX + s) · 2−ij )

)
2

∣∣∣∣∣∣
(Claim 1)

=
1

8
· 1
p

∑
ℓ⃗∈{0,1}3

∣∣∣∣∣∣
∑

X∈Fp

3∏
j=1

(
1 + (−1)ℓj signp(αjX · 2−ij )

)

−
∑

X∈Fp

3∏
j=1

(
1 + (−1)ℓj signp((αjX + s) · 2−ij )

)∣∣∣∣∣∣
Observe that

3∏
j=1

(
1 + (−1)ℓj · signp((αjX + s) · 2−ij )

)

= 1 +

 3∑
j=1

(−1)ℓj · signp((αjX + s) · 2−ij )


+

 ∑
1⩽j1<j2⩽3

(−1)ℓj1+ℓj2 · signp((αj1X + s) · 2−ij1 ) signp((αj2X + s) · 2−ij2 )


+ (−1)ℓ1+ℓ2+ℓ3 · signp((α1X + s) · 2−i1) signp((α2X + s) · 2−i2) signp((α3X + s) · 2−i3)

Since for αj , s,X ∈ Fp, αj · 2−ij ·X + s · 2−ij is an automorphism on F , then∑
X∈Fp

signp(αj · 2−ij ·X + s · 2−ij ) = 1.
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Hence,

2SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
=

1

8p
·
∑

ℓ⃗∈{0,1}3

∣∣∣∣∣∣
∑

1⩽j1<j2⩽3

(−1)ℓj1+ℓj2 ·

 ∑
X∈Fp

signp(αj1X · 2−ij1 ) signp(αj2X · 2−ij2 )

−
∑

X∈Fp

signp((αj1X + s) · 2−ij1 ) signp((αj2X + s) · 2−ij2 )


+ (−1)ℓ1+ℓ2+ℓ3 ·

 ∑
X∈Fp

signp(α1X · 2−i1) signp(α2X · 2−i2) signp(α3X · 2−i2)

−
∑

X∈Fp

signp((α1X + s) · 2−i1) signp((α2X + s) · 2−i2) signp((α3X + s) · 2−i3)

∣∣∣∣∣∣
(23)

At this point, we introduce the following variable renaming.

Claim 17

signp(α1X · 2−i1 + 2−i1 · s) · signp(α2X · 2−i2 + 2−i2 · s)
= signp(α1Y · 2−i1 + s′) · signp(α2Y · 2−i2 + s′)

where

Y := X +
2−i1 − 2−i2

2−i1α1 − 2−i2α2
, and s′ :=

2−i12−i2(α1 − α2)

2−i1α1 − 2−i2α2
· s

The proof of this claim is by direct substitution. Note that s 7→ s′ is an auto-
morphism over F ∗ and s′ depends on ij1 and ij2 . Then, for

Y := X +
2−ij1 − 2−ij2

2−ij1αj1 − 2−ij2αj2

, and s′ :=
2−ij12−ij2 (αj1 − αj2)

2−ij1αj1 − 2−ij2αj2

· s

∑
X∈Fp

signp(αj1X · 2−ij1 ) signp(αj2X · 2−ij2 )−
∑

X∈Fp

signp((αj1X + s) · 2−ij1 ) signp((αj2X + s) · 2−ij2 )

=
∑

X∈Fp

signp(αj1X · 2−ij1 ) signp(αj2X · 2−ij2 )−
∑
Y ∈Fp

signp(αj1Y · 2−ij1 + s′) signp(αj2Y · 2−ij2 + s′)

(By Claim 17)

=
∑

X∈Fp

signp(α
′
j1X) signp(α

′
j2X)−

∑
Y ∈Fp

signp(α
′
j1Y + s′) signp(α

′
j2Y + s′)

(αj1 · 2−ij1 7→ α′
j1

and αj2 · 2−ij2 7→ α′
j2
)

=Σ
(0)
α′

j1
,α′

j2

−Σ(∆j1,j2)
α′

j1
,α′

j2

(24)
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where ∆j1,j2 = (s′ · 2−1) · ((α′
j1
)−1 − (α′

j2
)−1).

Define α′
1 := α1 · 2−i1 , α′

2 := α2 · 2−i2 , α′
3 := α3 · 2−i3 . Then,∑

X∈Fp

signp(α1X · 2−i1) signp(α2X · 2−i2) signp(α3X · 2−i2)

−
∑

X∈Fp

signp((α1X + s) · 2−i1) signp((α2X + s) · 2−i2) signp((α3X + s) · 2−i3)

=
∑

X∈Fp

signp(α
′
1X) signp(α

′
2X) signp(α

′
3X)

−
∑

X∈Fp

signp(α
′
1X + s · 2−i1) signp(α

′
2X + s · 2−i2) signp(α

′
3X + s · 2−i3)

=
∑

X∈Fp

signp(α
′
1X) signp(α

′
2X) signp(α

′
3X)

−
∑
Y ∈Fp

signp(α
′
1Y ) signp(α

′
2(Y −∆)) signp(α

′
3(Y −∆′))

(X + s · 2−i1 · (α′
1)

−1 7→ Y )

=Σ
(0,0)
α′

1,α
′
2,α

′
3
−Σ(∆,∆′)

α′
1,α

′
2,α

′
3

(25)

where∆ := s·2−i1 ·(α′
1)

−1−s·2−i2 ·(α′
2)

−1 and∆′ := s · 2−i1 · (α′
1)

−1 − s · 2−i3 · (α′
3)

−1.
By Claim 15, we get

Σ
(0,0)
α′

1,α
′
2,α

′
3
−Σ(∆,∆′)

α′
1,α

′
2,α

′
3

= −
∑

T∈{∆,∆′}

signp(α
′
1 · T ) · signp(α′

2 · (T −∆)) · signp(α′
3 · (T −∆′))

Then, ∣∣∣∣Σ(0,0)
α′

1,α
′
2,α

′
3
−Σ(∆,∆′)

α′
1,α

′
2,α

′
3

∣∣∣∣ ⩽ 2.

Substituting Equation 24 and Equation 25 to the expression in Equation 23
as follows.

2SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
=

1

8p
·
∑

ℓ⃗∈{0,1}3

∣∣∣∣∣∣
∑

1⩽j1<j2⩽3

(−1)ℓj1+ℓj2 ·
(
Σ

(0)
α′

j1
,α′

j2

−Σ(∆j1,j2)
α′

j1
,α′

j2

)

+(−1)ℓ1+ℓ2+ℓ3 ·
(
Σ

(0,0)
α′

1,α
′
2,α

′
3
−Σ(∆,∆′)

α′
1,α

′
2,α

′
3

)∣∣∣∣
where ∆j1,j2 = (s′ ·2−1)·((α′

j1
)−1−(α′

j2
)−1), ∆ := s·2−i1 ·(α′

1)
−1−s·2−i2 ·(α′

2)
−1

and ∆′ := s · 2−i1 · (α′
1)

−1 − s · 2−i3 · (α′
3)

−1.
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By triangle inequality,

SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
⩽

∑
1⩽j1<j2⩽3

∣∣∣∣Σ(0)
α′

j1
,α′

j2

−Σ(∆j1,j2)
α′

j1
,α′

j2

∣∣∣∣
2p

+
1

p

Define ε := max1⩽i<j⩽3{εPHYS(αi, αj)}. Thus,

εPHYS(α⃗) ⩽ 3 · ε+ 1

p
.

F Some Technical Results

F.1 Proof of Lemma 8

Define

γ1 := α1

∏
j ̸=1

(α1 − αj)

γ2 := α2

∏
j ̸=2

(α2 − αj).

First, we will show that [γ1 : γ2] is a random equivalence class when α3 is chosen
randomly (and everything else is arbitrarily fixed).

Toward this objective, fix arbitrary α1, α2 ∈ F ∗
p such that α1 ̸= α2, and

arbitrary α4, α5, . . . , αn ∈ Fp, such that {α1, α2} ∩ {α4, . . . , αn} = ∅. Consider
α3 ← Fp \ {α1}.

[γ1 : γ2] =

α1

∏
j ̸=1

(α1 − αj) : α2

∏
j ̸=2

(α2 − αj)

 (by definition)

=

1 : − α2

α1
·
∏
j⩾3

(
α2 − αj

α1 − αj

)
(because α1 ̸= 0 and α1 ̸∈ {α3, α4, . . . , αn})

=

[
1: ∆ ·

(
α2 − α3

α1 − α3

)]
, where ∆ := − α2

α1
·
∏
j⩾4

(
α2 − αj

α1 − αj

)

=

1: ∆ · (1 + α2 − α1

α1 − α3

)
︸ ︷︷ ︸

Γ


We make the following observations.

1. ∆ ̸= 0, because α2 ̸= 0 and α2 ̸∈ {α4, . . . , αn}.
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2. (α1 − α3) is a uniform distribution over F ∗
p , because α1 ̸= α3.

3. α2−α1

α1−α3
is a uniform distribution over F ∗

p , because α1 ̸= α2.

4.
(
1 + α2−α1

α1−α3

)
is a uniform distribution over Fp \ {1}.

5. Γ is a uniform distribution over Fp \ {∆}.

Let Γ ′ be the uniform distribution over Fp \ {0, 1}. Note that

SD (Γ , Γ ′) ⩽
2

p− 1
.

Therefore, [1 : Γ ] is 2/(p−1)-close to a uniform distribution over the equivalence
classes [1 : 2], [1 : 3], . . . , [1 : p−1]. Note that [β1 : β2] is identical to [γ−1

1 : γ−1
2 ] =[

1 : Γ−1
]
, which is 2/(p−1)-close to a uniform distribution over the equivalence

classes [1 : 2], [1 : 3], . . . , [1 : p− 1].

G Example of Secure Evaluation places against Physical
Bit Leakage

We consider ShamirSS(n = 2, k = 2, (α1, α2)) over the prime field F of order
p = 2λ − 1 – a Mersenne prime. We deduced earlier that the security of (α1, α2)
is identical to the security of all (u, v) in the equivalence class [α1 : α2]. Note
that [α1 : α2] is identical to the equivalence class [1 : α], where α = α2α

−1
1 .

The equivalence class [1 : α] is secure if and only if all the following equivalence
classes {

[1 : α], [1 : 21 · α], [1 : 22 · α], . . . , [1 : 2λ−1 · α]
}

are secure against the LSB leakage.
The elements generated by 2, ⟨2⟩ = {1, 2, 22, . . . , 2λ−1}, is a cyclic subgroup

of F ∗. Let α · ⟨2⟩ denote the coset {α, 2 ·α, . . . , 2λ−1 ·α} ∈ F ∗/⟨2⟩. Furthermore,
the equivalence class [1 : α] is secure against arbitrary physical bit leakage if
(and only if) the equivalence classes [1 : α′] are secure against arbitrary physical
bit leakage, for all α′ ∈ α · ⟨2⟩.

So, in the table below, when we mention α, it implies that any (α1, α2) ∈
[1 : α′] is secure against physical bit leakage attacks, where α′ ∈ α⟨2⟩.

Remark 8 (Adversarial LLL: A worst-case analysis). For one (α1, α2), there may
be multiple (u, v) ∈ [α1, α2] that the LLL algorithm can output. The output of
the LLL algorithm is crucial in assessing whether evaluation places are secure.
The LLL output can change our algorithm’s output in Figure 1 from “secure”
to “may be insecure.”

For example, consider the prime p = 127 and (α1, α2) = (1, 23). In this case,
B =

⌈
23/4
√
p
⌉
= 19. Note that (−11, 1) ∈ [α1 : α2] and (6, 11) ∈ [α1 : α2]. If the

LLL algorithm returns (11,−1), our algorithm will declare “may be insecure.”
If the LLL algorithm returns (6, 11), our algorithm will declare “secure.”
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Consider an “adversarial LLL” algorithm implementation for the worst-case
evaluation. On input (α1, α2), if there is (u, v) ∈ [α1 : α2] that makes our
algorithm in Figure 1 output “may be insecure,” the adversarial LLL outputs
that (u, v).

Consider an example of secure evaluation places for Mersenne prime p =
213−1 = 8191. The example evaluation places are secure even if the “adversarial
LLL” algorithm is used. Our code (running on Intel Core i7 7700K) returns all
the secure evaluation places in 45.515 seconds.

For example, the element “95” in Table 1 represents the following. Any
(α1, α2) ∈ [1 : α′] is secure against physical bit leakage attacks, where α′ ∈ 95⟨2⟩.
Note that

95 · ⟨2⟩ ={95, 2 · 95, 22 · 95, . . . , 212 · 95}
={95, 190, 380, 760, 1520, 3040, 6080, 3969, 7938, 7685, 7179, 6167, 4143}

Corollary 7 presents explicit evaluation places (α1, α2) ∈
[
1: 2⌊λ/2⌋ − 1

]
such

that for security parameter λ,

εPHYS(α⃗) ⩽
4 ·
(
2⌊λ/2⌋ + 2⌈λ/2⌉

)
− 6

p
.

When λ = 13 and p = 213 − 1, it implies that [1 : 63] would have εPHYS(α⃗) ≲
0.093. However, 63 · ⟨2⟩ is not listed in Table 1 because the “adversarial LLL”
algorithm may pick (u, v) = (1, 63) which is characterized as “may be insecure”
by our algorithm in Figure 1.

To generalize to ShamirSS(3, 2, (α1, α2, α3)) over the prime field F of order
p = 2λ − 1, we consider the equivalence class [1 : α : α′] where α = α2α

−1
1 and

α′ = α3α
−1
1 . If α, α′ and α′α−1 all belong to different cosets in Table 1, then the

equivalence class [1 : α : α′] is secure against arbitrary physical bit leakage.
For example, [1 : 95 : 103] is a good equivalence class of evaluation places

against physical bit leakage attack for ShamirSS(3, 2, (α1, α2, α3)). Consider α =
95 ∈ 95 · ⟨2⟩ and α′ = 103 ∈ 103 · ⟨2⟩ which are good evaluation places in Table 1.
Then, α′α−1 = 6209 ∈ 225 · ⟨2⟩ is also a good evaluation place against physical
bit leakage attacks.

Table 2 presents choices of α such that evaluation places in equivalence classes
of the form [1 : 95 : α] are secure for ShamirSS(3, 2, α⃗). If we choose α ∈ α′ · ⟨2⟩
from one of the cosets in Table 1, we only need to check α ·95−1 is also contained
in one of the coset.
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95 97 99 101 103 107 111 113 119 121 123
125 131 133 135 137 139 143 145 147 151 153
155 157 159 161 163 165 169 173 175 179 181
183 185 187 191 197 201 203 207 209 211 213
215 217 219 221 223 225 227 229 231 233 235
237 239 243 245 247 249 251 253 267 269 271
275 277 279 281 285 287 291 293 295 297 299
303 305 309 313 317 319 323 325 329 331 333
335 337 339 349 351 355 357 359 361 363 365
369 371 373 375 377 379 391 393 395 397 399
401 403 405 407 411 413 415 419 423 427 429
433 435 437 441 443 445 447 453 457 459 461
465 467 469 471 473 475 477 487 491 493 495
497 499 501 503 505 549 551 553 555 557 559
563 567 569 573 575 581 583 587 589 591 595
599 601 603 607 611 613 615 617 619 621 623
629 633 637 651 653 655 661 667 669 671 675
677 679 687 693 695 697 699 701 713 715 717
719 725 727 729 731 735 739 743 747 751 755
757 759 761 763 795 797 799 805 807 811 813
815 821 823 825 829 843 845 847 855 857 859
863 869 871 873 875 877 879 883 885 887 889
891 893 915 917 921 923 925 927 933 937 939
943 947 949 951 953 955 957 959 971 973 975
979 987 989 991 997 1001 1005 1007 1011 1175 1181
1183 1191 1197 1199 1205 1207 1211 1213 1227 1231 1235
1237 1239 1245 1247 1253 1255 1259 1261 1263 1267 1275
1323 1327 1333 1335 1339 1341 1343 1355 1357 1359 1371
1373 1375 1387 1389 1395 1397 1403 1405 1431 1435 1439
1447 1451 1461 1467 1469 1485 1487 1491 1495 1499 1501
1503 1511 1515 1519 1525 1655 1661 1691 1693 1695 1703
1709 1711 1717 1723 1725 1727 1743 1751 1757 1759 1773
1775 1783 1787 1851 1853 1855 1871 1879 1885 1887 1899
1901 1903 1909 1915 1963 1965 1967 1973 1975 1979 1981
1983 2007 2011 2013 2015 2775 2783 2795 2799 2807 2911
2927 2935 2939 2991 2999 3003 3035 3039 3055 3551 3575

Table 1. Secure Evaluation Places against Physical Bit Leakage when p = 213 − 1. If
an element α ∈ F appears in the list above, it implies the following. Any evaluation
places (α1, α2) ∈ [1 : α′], where α′ ∈ α · ⟨2⟩, is secure against all physical bit leakage
attacks.
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97 99 103 111 113 119 121 125 135 139 143
151 155 159 165 173 175 181 185 187 191 203
207 215 217 225 229 231 233 235 237 239 243
245 251 269 271 275 277 279 281 291 293 295
297 299 305 309 313 317 325 331 335 339 349
351 355 357 361 363 365 371 373 377 379 391
393 395 397 399 403 405 407 413 415 429 435
437 445 447 457 459 461 467 469 471 473 477
487 491 495 497 499 501 503 505 551 553 555
559 575 581 583 603 607 611 613 615 617 621
623 637 651 653 655 661 667 671 679 687 693
695 697 701 713 715 719 725 729 735 743 755
757 797 799 805 807 811 813 815 823 825 829
843 847 857 859 863 869 871 873 877 879 883
885 891 893 915 921 923 937 939 947 951 955
959 973 975 987 989 991 997 1005 1007 1011 1175
1197 1199 1205 1207 1211 1213 1227 1231 1237 1239 1245
1247 1253 1259 1261 1275 1327 1335 1341 1355 1357 1371
1373 1389 1397 1403 1405 1447 1451 1461 1467 1469 1485
1495 1511 1519 1525 1691 1693 1695 1703 1709 1711 1723
1725 1743 1751 1757 1783 1851 1853 1855 1871 1885 1903
1909 1915 1963 1965 1973 1975 1979 1983 2013 2795 2807
2911 2935 2939 2991 2999 3035

Table 2. Secure Evaluation Places against Physical Bit Leakage when p = 213− 1 and
(n, k) = (3, 2). If an element α ∈ F appears in the list above, it implies the following.
Any evaluation places (α1, α2, α3) ∈ [1 : 95 : α′], where α′ ∈ α · ⟨2⟩, is secure against
all physical bit leakage attacks.
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